Skip to main content Accessibility help
×
Home

A survey of direct methods for sparse linear systems

  • Timothy A. Davis (a1), Sivasankaran Rajamanickam (a2) and Wissam M. Sid-Lakhdar (a3)

Abstract

Wilkinson defined a sparse matrix as one with enough zeros that it pays to take advantage of them.1 This informal yet practical definition captures the essence of the goal of direct methods for solving sparse matrix problems. They exploit the sparsity of a matrix to solve problems economically: much faster and using far less memory than if all the entries of a matrix were stored and took part in explicit computations. These methods form the backbone of a wide range of problems in computational science. A glimpse of the breadth of applications relying on sparse solvers can be seen in the origins of matrices in published matrix benchmark collections (Duff and Reid 1979a, Duff, Grimes and Lewis 1989a, Davis and Hu 2011). The goal of this survey article is to impart a working knowledge of the underlying theory and practice of sparse direct methods for solving linear systems and least-squares problems, and to provide an overview of the algorithms, data structures, and software available to solve these problems, so that the reader can both understand the methods and know how best to use them.

Copyright

References

Hide All
Agrawal, A., Klein, P. and Ravi, R. (1993), Cutting down on fill using nested dissection: Provably good elimination orderings. In Graph Theory and Sparse Matrix Computation (George, A., Gilbert, J. R. and Liu, J. W. H., eds), Vol. 56 of IMA Volumes in Applied Mathematics, Springer, pp. 3155.
Agullo, E., Buttari, A., Guermouche, A. and Lopez, F. (2014), Implementing multifrontal sparse solvers for multicore architectures with sequential task flow runtime systems. Technical report IRI/RT2014-03FR, Institut de Recherche en Informatique de Toulouse (IRIT). To appear in ACM Trans. Math. Softw.
Agullo, E., Guermouche, A. and L’Excellent, J.-Y. (2008), ‘A parallel out-of-core multifrontal method: Storage of factors on disk and analysis of models for an out-of-core active memory’, Parallel Comput. 34, 296317.
Agullo, E., Guermouche, A. and L’Excellent, J.-Y. (2010), ‘Reducing the I/O volume in sparse out-of-core multifrontal methods’, SIAM J. Sci. Comput. 31, 47744794.
Alaghband, G. (1989), ‘Parallel pivoting combined with parallel reduction and fill-in control’, Parallel Comput. 11, 201221.
Alaghband, G. (1995), ‘Parallel sparse matrix solution and performance’, Parallel Comput. 21, 14071430.
Alaghband, G. and Jordan, H. F. (1989), ‘Sparse Gaussian elimination with controlled fill-in on a shared memory multiprocessor’, IEEE Trans. Comput. 38, 15391557.
Alvarado, F. L. and Schreiber, R. (1993), ‘Optimal parallel solution of sparse triangular systems’, SIAM J. Sci. Comput. 14, 446460.
Alvarado, F. L., Pothen, A. and Schreiber, R. (1993), Highly parallel sparse triangular solution. In Graph Theory and Sparse Matrix Computation (George, A., Gilbert, J. R. and Liu, J. W. H., eds), Vol. 56 of IMA Volumes in Applied Mathematics, Springer, pp. 141158.
Alvarado, F. L., Yu, D. C. and Betancourt, R. (1990), ‘Partitioned sparse $a^{-1}$ methods’, IEEE Trans. Power Systems 5, 452459.
Amestoy, P. R. and Duff, I. S. (1989), ‘Vectorization of a multiprocessor multifrontal code’, Intl J. Supercomp. Appl. 3, 4159.
Amestoy, P. R. and Duff, I. S. (1993), ‘Memory management issues in sparse multifrontal methods on multiprocessors’, Intl J. Supercomp. Appl. 7, 6482.
Amestoy, P. R. and Puglisi, C. (2002), ‘An unsymmetrized multifrontal LU factorization’, SIAM J. Matrix Anal. Appl. 24, 553569.
Amestoy, P. R., Ashcraft, C. C., Boiteau, O., Buttari, A., L’Excellent, J.-Y. and Weisbecker, C. (2015a), ‘Improving multifrontal methods by means of block low-rank representations’, SIAM J. Sci. Comput. 37, A1451A1474.
Amestoy, P. R., Davis, T. A. and Duff, I. S. (1996a), ‘An approximate minimum degree ordering algorithm’, SIAM J. Matrix Anal. Appl. 17, 886905.
Amestoy, P. R., Davis, T. A. and Duff, I. S. (2004a), ‘Algorithm 837: AMD, an approximate minimum degree ordering algorithm’, ACM Trans. Math. Softw. 30, 381388.
Amestoy, P. R., Daydé, M. J. and Duff, I. S. (1989), Use of level-3 BLAS kernels in the solution of full and sparse linear equations. In High Performance Computing (Delhaye, J.-L. and Gelenbe, E., eds), North-Holland, pp. 1931.
Amestoy, P. R., Duff, I. S. and L’Excellent, J.-Y. (2000), ‘Multifrontal parallel distributed symmetric and unsymmetric solvers’, Comput. Methods Appl. Mech. Eng. 184, 501520.
Amestoy, P. R., Duff, I. S. and Puglisi, C. (1996b), ‘Multifrontal QR factorization in a multiprocessor environment’, Numer. Linear Algebra Appl. 3, 275300.
Amestoy, P. R., Duff, I. S. and Vömel, C. (2004b), ‘Task scheduling in an asynchronous distributed memory multifrontal solver’, SIAM J. Matrix Anal. Appl. 26, 544565.
Amestoy, P. R., Duff, I. S., Guermouche, A. and Slavova, T. (2010), ‘Analysis of the solution phase of a parallel multifrontal solver’, Parallel Comput. 36, 315.
Amestoy, P. R., Duff, I. S., L’Excellent, J.-Y. and Koster, J. (2001a), ‘A fully asynchronous multifrontal solver using distributed dynamic scheduling’, SIAM J. Matrix Anal. Appl. 23, 1541.
Amestoy, P. R., Duff, I. S., L’Excellent, J.-Y. and Li, X. S. (2001b), ‘Analysis and comparison of two general sparse solvers for distributed memory computers’, ACM Trans. Math. Softw. 27, 388421.
Amestoy, P. R., Duff, I. S., L’Excellent, J.-Y. and Li, X. S. (2003a), ‘Impact of the implementation of MPI point-to-point communications on the performance of two general sparse solvers’, Parallel Comput. 29, 833947.
. Amestoy, P. R., Duff, I. S., L’Excellent, J.-Y. and Rouet, F. H. (2015b), ‘Parallel computation of entries of $A^{-1}$’, SIAM J. Sci. Comput. 37, C268C284.
Amestoy, P. R., Duff, I. S., L’Excellent, J.-Y., Robert, Y., Rouet, F. H. and Uçar, B. (2012), ‘On computing inverse entries of a sparse matrix in an out-of-core environment’, SIAM J. Sci. Comput. 34, 19751999.
Amestoy, P. R., Duff, I. S., Pralet, S. and Vömel, C. (2003b), ‘Adapting a parallel sparse direct solver to architectures with clusters of SMPs’, Parallel Comput. 29, 16451668.
Amestoy, P. R., Guermouche, A., L’Excellent, J.-Y. and Pralet, S. (2006), ‘Hybrid scheduling for the parallel solution of linear systems’, Parallel Comput. 32, 136156.
Amestoy, P. R., L’Excellent, J.-Y. and Sid-Lakhdar, W. M. (2014a), Characterizing asynchronous broadcast trees for multifrontal factorizations. In Proc. SIAM Workshop on Combinatorial Scientific Computing: CSC14, pp. 5153.
Amestoy, P. R., L’Excellent, J.-Y., Rouet, F.-H. and Sid-Lakhdar, W. M. (2014b), Modeling 1D distributed-memory dense kernels for an asynchronous multifrontal sparse solver. In Proc. High-Performance Computing for Computational Science: VECPAR 2014.
Amestoy, P. R., Li, X. S. and Ng, E. (2007a), ‘Diagonal Markowitz scheme with local symmetrization’, SIAM J. Matrix Anal. Appl. 29, 228244.
Amestoy, P. R., Li, X. S. and Pralet, S. (2007b), ‘Unsymmetric ordering using a constrained Markowitz scheme’, SIAM J. Matrix Anal. Appl. 29, 302327.
Amit, R. and Hall, C. (1981), ‘Storage requirements for profile and frontal elimination’, SIAM J. Numer. Anal. 19, 205218.
Anderson, E. and Saad, Y. (1989), ‘Solving sparse triangular linear systems on parallel computers’, Intl J. High Speed Computing 1, 7395.
Anderson, E., Bai, Z., Bischof, C. H., Blackford, S., Demmel, J. W., Dongarra, J. J., Du Croz, J., Greenbaum, A., Hammarling, S., Mckenney, A. and Sorensen, D. C. (1999), LAPACK Users’ Guide, third edition, SIAM. www.netlib.org/lapack/lug/
Arioli, M., Demmel, J. W. and Duff, I. S. (1989a), ‘Solving sparse linear systems with sparse backward error’, SIAM J. Matrix Anal. Appl. 10, 165190.
Arioli, M., Duff, I. S. and de Rijk, P. P. M. (1989b), ‘On the augmented systems approach to sparse least-squares problems’, Numer. Math. 55, 667684.
Arioli, M., Duff, I. S., Gould, N. I. M. and Reid, J. K. (1990), ‘Use of the P4 and P5 algorithms for in-core factorization of sparse matrices’, SIAM J. Sci. Comput. 11, 913927.
Arnold, C. P., Parr, M. I. and Dewe, M. B. (1983), ‘An efficient parallel algorithm for the solution of large sparse linear matrix equations’, IEEE Trans. Comput. C‐32, 265272.
Ashcraft, C. C. (1987), A vector implementation of the multifrontal method for large sparse, symmetric positive definite systems. Technical report ETA-TR-51, Boeing Computer Services, Seattle, WA.
Ashcraft, C. C. (1993), The fan-both family of column-based distributed Cholesky factorization algorithms. In Graph Theory and Sparse Matrix Computation (George, A., Gilbert, J. R. and Liu, J. W. H., eds), Vol. 56 of IMA Volumes in Applied Mathematics, Springer, pp. 159190.
Ashcraft, C. C. (1995), ‘Compressed graphs and the minimum degree algorithm’, SIAM J. Sci. Comput. 16, 14041411.
Ashcraft, C. C. and Grimes, R. G. (1989), ‘The influence of relaxed supernode partitions on the multifrontal method’, ACM Trans. Math. Softw. 15, 291309.
Ashcraft, C. C. and Grimes, R. G. (1999), SPOOLES: An object-oriented sparse matrix library. In Proc. 1999 SIAM Conference on Parallel Processing for Scientific Computing. www.netlib.org/linalg/spooles
Ashcraft, C. C. and Liu, J. W. H. (1997), ‘Using domain decomposition to find graph bisectors’, BIT Numer. Math. 37, 506534.
Ashcraft, C. C. and Liu, J. W. H. (1998a), ‘Applications of the Dulmage–Mendelsohn decomposition and network flow to graph bisection improvement’, SIAM J. Matrix Anal. Appl. 19, 325354.
Ashcraft, C. C. and Liu, J. W. H. (1998b), ‘Robust ordering of sparse matrices using multisection’, SIAM J. Matrix Anal. Appl. 19, 816832.
Ashcraft, C. C., Eisenstat, S. C. and Liu, J. W. H. (1990a), ‘A fan-in algorithm for distributed sparse numerical factorization’, SIAM J. Sci. Comput. 11, 593599.
Ashcraft, C. C., Eisenstat, S. C., Liu, J. W. H. and Sherman, A. H. (1990b), A comparison of three column-based distributed sparse factorization schemes. Technical report YALEU/DCS/RR-810, Yale University.
Ashcraft, C. C., Grimes, R. G. and Lewis, J. G. (1998), ‘Accurate symmetric indefinite linear equation solvers’, SIAM J. Matrix Anal. Appl. 20, 513561.
Ashcraft, C. C., Grimes, R. G., Lewis, J. G., Peyton, B. W. and Simon, H. D. (1987), ‘Progress in sparse matrix methods for large linear systems on vector supercomputers’, Intl J. Supercomp. Appl. 1, 1030.
Avron, H., Shklarski, G. and Toledo, S. (2008), ‘Parallel unsymmetric-pattern multifrontal sparse LU with column preordering’, ACM Trans. Math. Softw. 34, 131.
Aykanat, C., Cambazoglu, B. B. and Uçar, B. (2008), ‘Multi-level direct K-way hypergraph partitioning with multiple constraints and fixed vertices’, J. Parallel Distrib. Comput. 68, 609625.
Aykanat, C., Pinar, A. and Çatalyürek, U. V. (2004), ‘Permuting sparse rectangular matrices into block-diagonal form’, SIAM J. Sci. Comput. 25, 18601879.
Azad, A., Halappanavar, M., Rajamanickam, S., Boman, E., Khan, A. and Pothen, A. (2012), Multithreaded algorithms for maximum matching in bipartite graphs. In Proc. 26th IEEE International Parallel and Distributed Processing Symposium: IPDPS, pp. 860872.
Bank, R. E. and Rose, D. J. (1990), ‘On the complexity of sparse Gaussian elimination via bordering’, SIAM J. Sci. Comput. 11, 145160.
Bank, R. E. and Smith, R. K. (1987), ‘General sparse elimination requires no permanent integer storage’, SIAM J. Sci. Comput. 8, 574584.
Barnard, S. T., Pothen, A. and Simon, H. D. (1995), ‘A spectral algorithm for envelope reduction of sparse matrices’, Numer. Linear Algebra Appl. 2, 317334.
Benner, R. E., Montry, G. R. and Weigand, G. G. (1987), ‘Concurrent multifrontal methods: Shared memory, cache, and frontwidth issues’, Intl J. Supercomp. Appl. 1, 2644.
Berge, C. (1957), ‘Two theorems in graph theory’, Proc. Nat. Acad. Sci. USA 43, 842.
Berman, P. and Schnitger, G. (1990), ‘On the performance of the minimum degree ordering for Gaussian elimination’, SIAM J. Matrix Anal. Appl. 11, 8388.
Berry, A., Dahlhaus, E., Heggernes, P. and Simonet, G. (2008), ‘Sequential and parallel triangulating algorithms for elimination game and new insights on minimum degree’, Theoret. Comput. Sci. 409, 601616.
Berry, R. D. (1971), ‘An optimal ordering of electronic circuit equations for a sparse matrix solution’, IEEE Trans. Circuit Theory CT‐19, 4050.
Bhat, M. V., Habashi, W. G., Liu, J. W. H., Nguyen, V. N. and Peeters, M. F. (1993), ‘A note on nested dissection for rectangular grids’, SIAM J. Matrix Anal. Appl. 14, 253258.
Birkhoff, G. and George, A. (1973), Elimination by nested dissection. In Complexity of Sequential and Parallel Numerical Algorithms (Traub, J. F., ed.), Academic, pp. 221269.
Bischof, C. H. and Hansen, P. C. (1991), ‘Structure-preserving and rank-revealing QR-factorizations’, SIAM J. Sci. Comput. 12, 13321350.
Bischof, C. H., Lewis, J. G. and Pierce, D. J. (1990), ‘Incremental condition estimation for sparse matrices’, SIAM J. Matrix Anal. Appl. 11, 644659.
Björck, A. (1984), ‘A general updating algorithm for constrained linear least squares problems’, SIAM J. Sci. Comput. 5, 394402.
Björck, A. (1988), ‘A direct method for sparse least squares problems with lower and upper bounds’, Numer. Math. 54, 1932.
Björck, A. (1996), Numerical Methods for Least Squares Problems, SIAM.
Björck, A. and Duff, I. S. (1988), ‘A direct method for sparse linear least squares problems’, Linear Algebra Appl. 34, 4367.
Bjorstad, P. E. (1987), ‘A large scale, sparse, secondary storage, direct linear equation solver for structural analysis and its implementation on vector and parallel architectures’, Parallel Comput. 5, 312.
Blackford, L., Choi, J., Cleary, A., D’Azevedo, E., Demmel, J., Dhillon, I., Dongarra, J., Hammarling, S., Henry, G., Petitet, A., Stanley, K., Walker, D. and Whaley, R. (1997), ScaLAPACK Users’ Guide, SIAM.
Boman, E. G. and Hendrickson, B. (1996), A multilevel algorithm for reducing the envelope of sparse matrices. Technical report SCCM-96-14, Stanford University.
Boman, E. G., Çatalyürek, Ü. V., Chevalier, C. and Devine, K. D. (2012), ‘The Zoltan and Isorropia parallel toolkits for combinatorial scientific computing: Partitioning, ordering and coloring’, Sci. Program. 20, 129150.
Brainman, I. and Toledo, S. (2002), ‘Nested-dissection orderings for sparse LU with partial pivoting’, SIAM J. Matrix Anal. Appl. 23, 9981012.
Brayton, R. K., Gustavson, F. G. and Willoughby, R. A. (1970), ‘Some results on sparse matrices’, Math. Comp. 24(112), 937954.
Brown, N. G. and Wait, R. (1981), A branching envelope reducing algorithm for finite element meshes. In Sparse Matrices and their Uses (Duff, I. S., ed.), Academic, pp. 315324.
Bui, T. and Jones, C. (1993), A heuristic for reducing fill in sparse matrix factorization. In Proc. 6th SIAM Conference on Parallel Processing for Scientific Computation, SIAM, pp. 445452.
Bunch, J. R. (1973), Complexity of sparse elimination. In Complexity of Sequential and Parallel Numerical Algorithms (Traub, J. F., ed.), Academic, pp. 197220.
Bunch, J. R. (1974), ‘Partial pivoting strategies for symmetric matrices’, SIAM J. Numer. Anal. 11, 521528.
Bunch, J. R. and Kaufman, L. (1977), ‘Some stable methods for calculating inertia and solving symmetric linear systems’, Math. Comp. 31, 163179.
Buttari, A. (2013), ‘Fine-grained multithreading for the multifrontal QR factorization of sparse matrices’, SIAM J. Sci. Comput. 35, C323C345.
Bykat, A. (1977), ‘A note on an element ordering scheme’, Intl J. Numer. Methods Eng. 11, 194198.
Calahan, D. A. (1973), Parallel solution of sparse simultaneous linear equations. In Proc. 11th Annual Allerton Conference on Circuits and System Theory, pp. 729735.
Cardenal, J., Duff, I. S. and Jiménez, J. (1998), ‘Solution of sparse quasi-square rectangular systems by Gaussian elimination’, IMA J. Numer. Anal. 18, 165177.
Çatalyürek, U. V. and Aykanat, C. (1999), ‘Hypergraph-partitioning-based decomposition for parallel sparse-matrix vector multiplication’, IEEE Trans. Parallel Distrib. Systems 10, 673693.
Çatalyürek, U. V. and Aykanat, C. (2001), A fine-grain hypergraph model for 2D decomposition of sparse matrices. In Proc. 15th IEEE International Parallel and Distributed Processing Symposium: IPDPS ’01, pp. 11991204.
Çatalyürek, U. V. and Aykanat, C. (2011), PaToH: Partitioning tool for hypergraphs. http://bmi.osu.edu/umit/software.html
Çatalyürek, U. V., Aykanat, C. and Kayaaslan, E. (2011), ‘Hypergraph partitioning-based fill-reducing ordering for symmetric matrices’, SIAM J. Sci. Comput. 33, 19962023.
Chan, W. M. and George, A. (1980), ‘A linear time implementation of the reverse Cuthill–McKee algorithm’, BIT Numer. Math. 20, 814.
Chen, G., Malkowski, K., Kandemir, M. and Raghavan, P. (2005), Reducing power with performance constraints for parallel sparse applications. In Proc. 19th IEEE Parallel and Distributed Processing Symposium.
Chen, Y., Davis, T. A., Hager, W. W. and Rajamanickam, S. (2008), ‘Algorithm 887: CHOLMOD, supernodal sparse Cholesky factorization and update/downdate’, ACM Trans. Math. Softw. 35, 114.
Chen, Y. T. and Tewarson, R. P. (1972a), ‘On the fill-in when sparse vectors are orthonormalized’, Computing 9, 5356.
Chen, Y. T. and Tewarson, R. P. (1972b), ‘On the optimal choice of pivots for the Gaussian elimination’, Computing 9, 245250.
Chen, X., Ren, L., Wang, Y. and Yang, H. (2015), ‘GPU-accelerated sparse LU factorization for circuit simulation with performance modeling’, IEEE Trans. Parallel Distrib. Systems 26, 786795.
Chen, X., Wang, Y. and Yang, H. (2013), ‘NICSLU: an adaptive sparse matrix solver for parallel circuit simulation’, IEEE Trans. Computer-Aided Design Integ. Circ. Sys. 32, 261274.
Cheng, K. Y. (1973a), ‘Minimizing the bandwidth of sparse symmetric matrices’, Computing 11, 103110.
Cheng, K. Y. (1973b), ‘Note on minimizing the bandwidth of sparse, symmetric matrices’, Computing 11, 2730.
Chevalier, C. and Pellegrini, F. (2008), ‘PT-SCOTCH: A tool for efficient parallel graph ordering’, Parallel Comput. 34, 318331.
Chu, E. and George, A. (1990), ‘Sparse orthogonal decomposition on a hypercube multiprocessor’, SIAM J. Matrix Anal. Appl. 11, 453465.
Chu, E., George, A., Liu, J. W. H. and Ng, E. G. (1984), SPARSPAK: Waterloo sparse matrix package, user’s guide for SPARSPAK-A. Technical report CS-84-36, Department of Computer Science, University of Waterloo, Ontario. https://cs.uwaterloo.ca/research/tr/1984/CS-84-36.pdf
Cliffe, K. A., Duff, I. S. and Scott, J. A. (1998), ‘Performance issues for frontal schemes on a cache-based high-performance computer’, Intl J. Numer. Methods Eng. 42, 127143.
Coleman, T. F., Edenbrandt, A. and Gilbert, J. R. (1986), ‘Predicting fill for sparse orthogonal factorization’, J. Assoc. Comput. Mach. 33, 517532.
Collins, R. J. (1973), ‘Bandwidth reduction by automatic renumbering’, Intl J. Numer. Methods Eng. 6, 345356.
Conroy, J. M. (1990), ‘Parallel nested dissection’, Parallel Comput. 16, 139156.
Conroy, J. M., Kratzer, S. G., Lucas, R. F. and Naiman, A. E. (1998), ‘Data-parallel sparse LU factorization’, SIAM J. Sci. Comput. 19, 584604.
Cormen, T. H., Leiserson, C. E. and Rivest, R. L. (1990), Introduction to Algorithms, MIT Press.
Cozette, O., Guermouche, A. and Utard, G. (2004), Adaptive paging for a multifrontal solver. In Proc. 18th International Conference on Supercomputing, ACM, pp. 267276.
Crane, H. L., Gibbs, N. E., Poole, W. G. and Stockmeyer, P. K. (1976), ‘Algorithm 508: Matrix bandwidth and profile reduction’, ACM Trans. Math. Softw. 2, 375377.
Curtis, A. R. and Reid, J. K. (1971), ‘The solution of large sparse unsymmetric systems of linear equations’, IMA J. Appl. Math. 8, 344353.
Cuthill, E. (1972), Several strategies for reducing the bandwidth of matrices. In Sparse Matrices and their Applications (Rose, D. J. and Willoughby, R. A., eds), Plenum, pp. 157166.
Cuthill, E. and Mckee, J. (1969), Reducing the bandwidth of sparse symmetric matrices. In Proc. 24th Conference of the ACM, Brandon Press, pp. 157172.
Damhaug, A. C. and Reid, J. R. (1996), MA46: A Fortran code for direct solution of sparse unsymmetric linear systems of equations from finite-element applications. Technical report RAL-TR-96-010, Rutherford Appleton Laboratory, Harwell, UK.
Dave, A. K. and Duff, I. S. (1987), ‘Sparse matrix calculations on the CRAY-2’, Parallel Comput. 5, 5564.
Davis, T. A. (2004a), ‘Algorithm 832: UMFPACK V4.3, an unsymmetric-pattern multifrontal method’, ACM Trans. Math. Softw. 30, 196199.
Davis, T. A. (2004b), ‘A column pre-ordering strategy for the unsymmetric-pattern multifrontal method’, ACM Trans. Math. Softw. 30, 165195.
Davis, T. A. (2005), ‘Algorithm 849: A concise sparse Cholesky factorization package’, ACM Trans. Math. Softw. 31, 587591.
Davis, T. A. (2006), Direct Methods for Sparse Linear Systems, SIAM.
Davis, T. A. (2011a), ‘Algorithm 915: SuiteSparseQR, multifrontal multithreaded rank-revealing sparse QR factorization’, ACM Trans. Math. Softw. 38, 8:1–8:22.
Davis, T. A. (2011b), MATLAB Primer, eighth edition, Chapman & Hall/CRC.
Davis, T. A. (2013), ‘Algorithm 930: FACTORIZE, an object-oriented linear system solver for MATLAB’, ACM Trans. Math. Softw. 39, 28:1–28:18.
Davis, T. A. and Davidson, E. S. (1988), ‘Pairwise reduction for the direct, parallel solution of sparse unsymmetric sets of linear equations’, IEEE Trans. Comput. 37, 16481654.
Davis, T. A. and Duff, I. S. (1997), ‘An unsymmetric-pattern multifrontal method for sparse LU factorization’, SIAM J. Matrix Anal. Appl. 18, 140158.
Davis, T. A. and Duff, I. S. (1999), ‘A combined unifrontal/multifrontal method for unsymmetric sparse matrices’, ACM Trans. Math. Softw. 25, 120.
Davis, T. A. and Hager, W. W. (1999), ‘Modifying a sparse Cholesky factorization’, SIAM J. Matrix Anal. Appl. 20, 606627.
Davis, T. A. and Hager, W. W. (2001), ‘Multiple-rank modifications of a sparse Cholesky factorization’, SIAM J. Matrix Anal. Appl. 22, 9971013.
Davis, T. A. and Hager, W. W. (2005), ‘Row modifications of a sparse Cholesky factorization’, SIAM J. Matrix Anal. Appl. 26, 621639.
Davis, T. A. and Hager, W. W. (2009), ‘Dynamic supernodes in sparse Cholesky update/downdate and triangular solves’, ACM Trans. Math. Softw. 35, 123.
Davis, T. A. and Hu, Y. (2011), ‘The University of Florida sparse matrix collection’, ACM Trans. Math. Softw. 38, 1:1–1:25.
Davis, T. A. and Palamadai Natarajan, E. (2010), ‘Algorithm 907: KLU, a direct sparse solver for circuit simulation problems’, ACM Trans. Math. Softw. 37, 36:1–36:17.
Davis, T. A. and Yew, P. C. (1990), ‘A nondeterministic parallel algorithm for general unsymmetric sparse LU factorization’, SIAM J. Matrix Anal. Appl. 11, 383402.
Davis, T. A., Gilbert, J. R., Larimore, S. I. and Ng, E. G. (2004a), ‘Algorithm 836: COLAMD, a column approximate minimum degree ordering algorithm’, ACM Trans. Math. Softw. 30, 377380.
Davis, T. A., Gilbert, J. R., Larimore, S. I. and Ng, E. G. (2004b), ‘A column approximate minimum degree ordering algorithm’, ACM Trans. Math. Softw. 30, 353376.
Daydé, M. J. and Duff, I. S. (1997), The use of computational kernels in full and sparse linear solvers, efficient code design on high-performance RISC processors. In Vector and Parallel Processing: VECPAR’96 (Palma, J. M. L. M. and Dongarra, J., eds), Vol. 1215 of Lecture Notes in Computer Science, Springer, pp. 108139.
De Souza, C., Keunings, R., Wolsey, L. A. and Zone, O. (1994), ‘A new approach to minimising the frontwidth in finite element calculations’, Comput. Methods Appl. Mech. Eng. 111, 323334.
Del Corso, G. M. and Manzini, G. (1999), ‘Finding exact solutions to the bandwidth minimization problem’, Computing 62, 189203.
Dembart, B. and Neves, K. W. (1977), Sparse triangular factorization on vector computers. In Exploring Applications of Parallel Processing to Power Systems Applications (Anderson, P. M., ed.), Electric Power Research Institute, California, pp. 57101.
Demmel, J. W. (1997), Applied Numerical Linear Algebra, SIAM.
Demmel, J. W., Eisenstat, S. C., Gilbert, J. R., Li, X. S. and Liu, J. W. H. (1999a), ‘A supernodal approach to sparse partial pivoting’, SIAM J. Matrix Anal. Appl. 20, 720755.
Demmel, J. W., Gilbert, J. R. and Li, X. S. (1999b), ‘An asynchronous parallel supernodal algorithm for sparse Gaussian elimination’, SIAM J. Matrix Anal. Appl. 20, 915952.
Devine, K. D., Boman, E. G., Heaphy, R. T., Bisseling, R. H. and Çatalyürek, U. V. (2006), Parallel hypergraph partitioning for scientific computing. In Proc. 20th IEEE International Parallel and Distributed Processing Symposium: IPDPS’06.
Dobrian, F. and Pothen, A. (2005), Oblio: Design and performance. In State of the Art in Scientific Computing (Dongarra, J., Madsen, K. and Wasniewski, J., eds), Vol. 3732 of Lecture Notes in Computer Science, Springer, pp. 758767.
Dobrian, F., Kumfert, G. K. and Pothen, A. (2000), The design of sparse direct solvers using object oriented techniques. In Advances in Software Tools for Scientific Computing (Bruaset, A. M., Langtangen, H. P. and Quak, E., eds), Springer, pp. 89131.
Dongarra, J. J., Du Croz, J., Duff, I. S. and Hammarling, S. (1990), ‘A set of level-3 basic linear algebra subprograms’, ACM Trans. Math. Softw. 16, 117.
Dongarra, J. J., Duff, I. S., Sorensen, D. C. and Van der Vorst, H. A. (1998), Numerical Linear Algebra for High-Performance Computers, SIAM.
Duff, I. S. (1974a), ‘On the number of nonzeros added when Gaussian elimination is performed on sparse random matrices’, Math. Comp. 28, 219230.
Duff, I. S. (1974b), ‘Pivot selection and row ordering in Givens reductions on sparse matrices’, Computing 13, 239248.
Duff, I. S. (1977a), ‘On permutations to block triangular form’, IMA J. Appl. Math. 19, 339342.
Duff, I. S. (1977b), ‘A survey of sparse matrix research’, Proc. IEEE 65, 500535.
Duff, I. S. (1979), Practical comparisons of codes for the solution of sparse linear systems. In Sparse Matrix Proceedings (Duff, I. S. and Stewart, G. W., eds), SIAM, pp. 107134.
Duff, I. S. (1981a), ‘Algorithm 575: Permutations for a zero-free diagonal’, ACM Trans. Math. Softw. 7, 387390.
Duff, I. S. (1981b), ‘ME28: A sparse unsymmetric linear equation solver for complex equations’, ACM Trans. Math. Softw. 7, 505511.
Duff, I. S. (1981c), ‘On algorithms for obtaining a maximum transversal’, ACM Trans. Math. Softw. 7, 315330.
Duff, I. S. (1981d), A sparse future. In Sparse Matrices and their Uses (Duff, I. S., ed.), Academic, pp. 129.
Duff, I. S. (1981e), Sparse Matrices and their Uses, Academic.
Duff, I. S. (1984a), ‘Design features of a frontal code for solving sparse unsymmetric linear systems out-of-core’, SIAM J. Sci. Comput. 5, 270280.
Duff, I. S. (1984b), ‘Direct methods for solving sparse systems of linear equations’, SIAM J. Sci. Comput. 5, 605619.
Duff, I. S. (1984c), The solution of nearly symmetric sparse linear systems. In Computing Methods in Applied Sciences and Engineering, VI: Proc. 6th International Symposium (Glowinski, R. and Lions, J.-L., eds), North-Holland, pp. 5774.
Duff, I. S. (1984d), The solution of sparse linear systems on the CRAY-1. In High-Speed Computation (Kowalik, J. S., ed.), Springer, pp. 293309.
Duff, I. S. (1984e), A survey of sparse matrix software. In Sources and Development of Mathematical Software (Cowell, W. R., ed.), Prentice-Hall, pp. 165199.
Duff, I. S. (1985), Data structures, algorithms and software for sparse matrices. In Sparsity and its Applications (Evans, D. J., ed.), Cambridge University Press, pp. 129.
Duff, I. S. (1986a), ‘Parallel implementation of multifrontal schemes’, Parallel Comput. 3, 193204.
Duff, I. S. (1986b), The parallel solution of sparse linear equations. In CONPAR 86, Proc. Conference on Algorithms and Hardware for Parallel Processing (Handler, W., Haupt, D., Jeltsch, R., Juling, W. and Lange, O., eds), Vol. 237 of Lecture Notes in Computer Science, Springer, pp. 1824.
Duff, I. S. (1989a), ‘Direct solvers’, Computer Physics Reports 11, 120.
Duff, I. S. (1989b), ‘Multiprocessing a sparse matrix code on the Alliant FX/8’, J. Comput. Appl. Math. 27, 229239.
Duff, I. S. (1989c), Parallel algorithms for sparse matrix solution. In Parallel Computing: Methods, Algorithms, and Applications (Evans, D. J. and Sutti, C., eds), Adam Hilger Ltd, Bristol, pp. 7382.
Duff, I. S. (1990), ‘The solution of large-scale least-squares problems on supercomputers’, Ann. Oper. Res. 22, 241252.
Duff, I. S. (1991), Parallel algorithms for general sparse systems. In Computer Algorithms for Solving Linear Algebraic Equations (Spedicato, E., ed.), Vol. 77 of NATO ASI Series, Springer, pp. 277297.
Duff, I. S. (1996), ‘A review of frontal methods for solving linear systems’, Computer Physics Comm. 97, 4552.
Duff, I. S. (2000), ‘The impact of high-performance computing in the solution of linear systems: Trends and problems’, J. Comput. Appl. Math. 123, 515530.
Duff, I. S. (2004), ‘MA57: A code for the solution of sparse symmetric definite and indefinite systems’, ACM Trans. Math. Softw. 30, 118144.
Duff, I. S. (2007), ‘Developments in matching and scaling algorithms’, Proc. Applied Math. Mech. 7, 10108011010802.
Duff, I. S. (2009), ‘The design and use of a sparse direct solver for skew symmetric matrices’, J. Comput. Appl. Math. 226, 5054.
Duff, I. S. and Johnsson, L. S. (1989), Node orderings and concurrency in structurally-symmetric sparse problems. Chapter 12 of Parallel Supercomputing: Methods, Algorithms, and Applications (Carey, G. F., ed.), Wiley, pp. 177189.
Duff, I. S. and Koster, J. (1999), ‘The design and use of algorithms for permuting large entries to the diagonal of sparse matrices’, SIAM J. Matrix Anal. Appl. 20, 889901.
Duff, I. S. and Koster, J. (2001), ‘On algorithms for permuting large entries to the diagonal of a sparse matrix’, SIAM J. Matrix Anal. Appl. 22, 973996.
Duff, I. S. and Pralet, S. (2005), ‘Strategies for scaling and pivoting for sparse symmetric indefinite problems’, SIAM J. Matrix Anal. Appl. 27, 313340.
Duff, I. S. and Pralet, S. (2007), ‘Towards stable mixed pivoting strategies for the sequential and parallel solution of sparse symmetric indefinite systems’, SIAM J. Matrix Anal. Appl. 29, 10071024.
Duff, I. S. and Reid, J. K. (1974), ‘A comparison of sparsity orderings for obtaining a pivotal sequence in Gaussian elimination’, IMA J. Appl. Math. 14, 281291.
Duff, I. S. and Reid, J. K. (1976), ‘A comparison of some methods for the solution of sparse overdetermined systems of linear equations’, IMA J. Appl. Math. 17, 267280.
Duff, I. S. and Reid, J. K. (1978a), ‘Algorithm 529: Permutations to block triangular form’, ACM Trans. Math. Softw. 4, 189192.
Duff, I. S. and Reid, J. K. (1978b), ‘An implementation of Tarjan’s algorithm for the block triangularization of a matrix’, ACM Trans. Math. Softw. 4, 137147.
Duff, I. S. and Reid, J. K. (1979a), Performance evaluation of codes for sparse matrix problems. In Performance Evaluation of Numerical Software; Proc. IFIP TC 2.5 Working Conference (Fosdick, L. D., ed.), North-Holland, pp. 121135.
Duff, I. S. and Reid, J. K. (1979b), ‘Some design features of a sparse matrix code’, ACM Trans. Math. Softw. 5, 1835.
Duff, I. S. and Reid, J. K. (1982), ‘Experience of sparse matrix codes on the CRAY-1’, Computer Physics Comm. 26, 293302.
Duff, I. S. and Reid, J. K. (1983a), ‘The multifrontal solution of indefinite sparse symmetric linear equations’, ACM Trans. Math. Softw. 9, 302325.
Duff, I. S. and Reid, J. K. (1983b), ‘A note on the work involved in no-fill sparse matrix factorization’, IMA J. Numer. Anal. 3, 3740.
Duff, I. S. and Reid, J. K. (1984), ‘The multifrontal solution of unsymmetric sets of linear equations’, SIAM J. Sci. Comput. 5, 633641.
Duff, I. S. and Reid, J. K. (1996a), ‘The design of MA48: A code for the direct solution of sparse unsymmetric linear systems of equations’, ACM Trans. Math. Softw. 22, 187226.
Duff, I. S. and Reid, J. K. (1996b), ‘Exploiting zeros on the diagonal in the direct solution of indefinite sparse symmetric linear systems’, ACM Trans. Math. Softw. 22, 227257.
Duff, I. S. and Scott, J. A. (1996), ‘The design of a new frontal code for solving sparse, unsymmetric systems’, ACM Trans. Math. Softw. 22, 3045.
Duff, I. S. and Scott, J. A. (1999), ‘A frontal code for the solution of sparse positive-definite symmetric systems arising from finite-element applications’, ACM Trans. Math. Softw. 25, 404424.
Duff, I. S. and Scott, J. A. (2004), ‘A parallel direct solver for large sparse highly unsymmetric linear systems’, ACM Trans. Math. Softw. 30, 95117.
Duff, I. S. and Scott, J. A. (2005), ‘Stabilized bordered block diagonal forms for parallel sparse solvers’, Parallel Comput. 31, 275289.
Duff, I. S. and Uçar, B. (2010), ‘On the block triangular form of symmetric matrices’, SIAM Review 52, 455470.
Duff, I. S. and Uçar, B. (2012), Combinatorial problems in solving linear systems. Chapter 2 of Combinatorial Scientific Computing (Schenk, O., ed.), Chapman & Hall/CRC Computational Science, pp. 2168.
Duff, I. S. and Van der Vorst, H. A. (1999), ‘Developments and trends in the parallel solution of linear systems’, Parallel Comput. 25, 19311970.
Duff, I. S. and Wiberg, T. (1988), ‘Implementations of $\text{O}(\sqrt{n}t)$ assignment algorithms’, ACM Trans. Math. Softw. 14, 267287.
Duff, I. S., Erisman, A. M. and Reid, J. K. (1976), ‘On George’s nested dissection method’, SIAM J. Numer. Anal. 13, 686695.
Duff, I. S., Erisman, A. M. and Reid, J. K. (1986), Direct Methods for Sparse Matrices, Oxford University Press.
Duff, I. S., Erisman, A. M., Gear, C. W. and Reid, J. K. (1988), ‘Sparsity structure and Gaussian elimination’, ACM SIGNUM Newsletter 23, 28.
Duff, I. S., Gould, N. I. M., Lescrenier, M. and Reid, J. K. (1990), The multifrontal method in a parallel environment. In Reliable Numerical Computation (Cox, M. G. and Hammarling, S., eds), Oxford University Press, pp. 93111.
Duff, I. S., Gould, N. I. M., Reid, J. K., Scott, J. A. and Turner, K. (1991), ‘The factorization of sparse symmetric indefinite matrices’, IMA J. Numer. Anal. 11, 181204.
Duff, I. S., Grimes, R. G. and Lewis, J. G. (1989a), ‘Sparse matrix test problems’, ACM Trans. Math. Softw. 15, 114.
Duff, I. S., Kaya, K. and Uçar, B. (2011), ‘Design, implementation, and analysis of maximum transversal algorithms’, ACM Trans. Math. Softw. 38, 13:1–13:31.
Duff, I. S., Reid, J. K. and Scott, J. A. (1989b), ‘The use of profile reduction algorithms with a frontal code’, Intl J. Numer. Methods Eng. 28, 25552568.
Duff, I. S., Reid, J. K., Munksgaard, J. K. and Nielsen, H. B. (1979), ‘Direct solution of sets of linear equations whose matrix is sparse, symmetric and indefinite’, IMA J. Appl. Math. 23, 235250.
Dulmage, A. L. and Mendelsohn, N. S. (1963), ‘Two algorithms for bipartite graphs’, J. SIAM 11, 183194.
Edlund, O. (2002), ‘A software package for sparse orthogonal factorization and updating’, ACM Trans. Math. Softw. 28, 448482.
Eisenstat, S. C. and Liu, J. W. H. (1992), ‘Exploiting structural symmetry in unsymmetric sparse symbolic factorization’, SIAM J. Matrix Anal. Appl. 13, 202211.
Eisenstat, S. C. and Liu, J. W. H. (1993a), ‘Exploiting structural symmetry in a sparse partial pivoting code’, SIAM J. Sci. Comput. 14, 253257.
Eisenstat, S. C. and Liu, J. W. H. (1993b), Structural representations of Schur complements in sparse matrices. In Graph Theory and Sparse Matrix Computation (George, A., Gilbert, J. R. and Liu, J. W. H., eds), Vol. 56 of IMA Volumes in Applied Mathematics, Springer, pp. 85100.
Eisenstat, S. C. and Liu, J. W. H. (2005a), ‘The theory of elimination trees for sparse unsymmetric matrices’, SIAM J. Matrix Anal. Appl. 26, 686705.
Eisenstat, S. C. and Liu, J. W. H. (2005b), ‘A tree based dataflow model for the unsymmetric multifrontal method’, Electron. Trans. Numer. Anal. 21, 119.
Eisenstat, S. C. and Liu, J. W. H. (2008), ‘Algorithmic aspects of elimination trees for sparse unsymmetric matrices’, SIAM J. Matrix Anal. Appl. 29, 13631381.
Eisenstat, S. C., Gursky, M. C., Schultz, M. H. and Sherman, A. H. (1977), The Yale sparse matrix package II: The non-symmetric codes. Technical report 114, Department of Computer Science, Yale University.
Eisenstat, S. C., Gursky, M. C., Schultz, M. H. and Sherman, A. H. (1982), ‘Yale sparse matrix package I: The symmetric codes’, Intl J. Numer. Methods Eng. 18, 11451151.
Eisenstat, S. C., Schultz, M. H. and Sherman, A. H. (1975), ‘Efficient implementation of sparse symmetric Gaussian elimination’, Adv. Comput Methods Partial Diff. Equations, pp. 33–39.
Eisenstat, S. C., Schultz, M. H. and Sherman, A. H. (1976a), Applications of an element model for Gaussian elimination. In Sparse Matrix Computations (Bunch, J. R. and Rose, D. J., eds), Academic, pp. 8596.
Eisenstat, S. C., Schultz, M. H. and Sherman, A. H. (1976b), Considerations in the design of software for sparse Gaussian elimination. In Sparse Matrix Computations (Bunch, J. R. and Rose, D. J., eds), Academic, pp. 263273.
Eisenstat, S. C., Schultz, M. H. and Sherman, A. H. (1979), Software for sparse Gaussian elimination with limited core storage. In Sparse Matrix Proceedings (Duff, I. S. and Stewart, G. W., eds), SIAM, pp. 135153.
Eisenstat, S. C., Schultz, M. H. and Sherman, A. H. (1981), ‘Algorithms and data structures for sparse symmetric Gaussian elimination’, SIAM J. Sci. Comput. 2, 225237.
Erisman, A. M., Grimes, R. G., Lewis, J. G. and Poole, W. G. (1985), ‘A structurally stable modification of Hellerman–Rarick’s P4 algorithm for reordering unsymmetric sparse matrices’, SIAM J. Numer. Anal. 22, 369385.
Erisman, A. M., Grimes, R. G., Lewis, J. G., Poole, W. G. and Simon, H. D. (1987), ‘Evaluation of orderings for unsymmetric sparse matrices’, SIAM J. Sci. Comput. 8, 600624.
Eswar, K., Huang, C.-H. and Sadayappan, P. (1994), Memory-adaptive parallel sparse Cholesky factorization. In Proc. Scalable High-Performance Computing Conference, 1994, pp. 317323.
Eswar, K., Huang, C.-H. and Sadayappan, P. (1995), On mapping data and computation for parallel sparse Cholesky factorization. In Proc. 5th Symp. Frontiers of Massively Parallel Computation, pp. 171178.
Eswar, K., Sadayappan, P. and Visvanathan, V. (1993a), Parallel direct solution of sparse linear systems. In Parallel Computing on Distributed Memory Multiprocessors (Özgüner, F. and Erçal, F., eds), Vol. 103 of NATO ASI Series, Springer, pp. 119142.
Eswar, K., Sadayappan, P., Huang, C.-H. and Visvanathan, V. (1993b), Supernodal sparse Cholesky factorization on distributed-memory multiprocessors. In Proc. International Conference on Parallel Processing: ICPP93,Vol. 3, pp. 1822.
D. J. Evans, ed. (1985), Sparsity and its Applications, Cambridge University Press.
Everstine, G. C. (1979), ‘A comparison of three resequencing algorithms for the reduction of matrix profile and wavefront’, Intl J. Numer. Methods Eng. 14, 837853.
Felippa, C. A. (1975), ‘Solution of linear equations with skyline-stored symmetric matrix’, Comput. Struct. 5, 1329.
Fenves, S. J. and Law, K. H. (1983), ‘A two-step approach to finite element ordering’, Intl J. Numer. Methods Eng. 19, 891911.
Fiduccia, C. M. and Mattheyses, R. M. (1982), A linear-time heuristic for improving network partition. In Proc. 19th Design Automation Conference, pp. 175181.
Fiedler, M. (1973), ‘Algebraic connectivity of graphs’, Czechoslovak Math J. 23, 298305.
Forrest, J. J. H. and Tomlin, J. A. (1972), ‘Updated triangular factors of the basis to maintain sparsity in the product form simplex method’, Math. Program. 2, 263278.
Foster, L. V. and Davis, T. A. (2013), ‘Algorithm 933: Reliable calculation of numerical rank, null space bases, pseudoinverse solutions and basic solutions using SuiteSparseQR’, ACM Trans. Math. Softw. 40, 7:1–7:23.
Fu, C., Jiao, X. and Yang, T. (1998), ‘Efficient sparse LU factorization with partial pivoting on distributed memory architectures’, IEEE Trans. Parallel Distrib. Systems 9, 109125.
Gallivan, K. A., Hansen, P. C., Ostromsky, T. and Zlatev, Z. (1995), ‘A locally optimized reordering algorithm and its application to a parallel sparse linear system solver’, Computing 54, 3967.
Gallivan, K. A., Marsolf, B. A. and Wijshoff, H. A. G. (1996), ‘Solving large nonsymmetric sparse linear systems using MCSPARSE’, Parallel Comput. 22, 12911333.
Gao, F. and Parlett, B. N. (1990), ‘A note on communication analysis of parallel sparse Cholesky factorization on a hypercube’, Parallel Comput. 16, 5960.
Gay, D. M. (1991), ‘Massive memory buys little speed for complete, in-core sparse Cholesky factorizations on some scalar computers’, Linear Algebra Appl. 152, 291314.
Geist, G. A. and Ng, E. G. (1989), ‘Task scheduling for parallel sparse Cholesky factorization’, Intl J. Parallel Program. 18, 291314.
Geng, P., Oden, J. T. and van de Geijn, R. A. (1997), ‘A parallel multifrontal algorithm and its implementation’, Comput. Methods Appl. Mech. Eng. 149, 289301.
Gentleman, W. M. (1975), Row elimination for solving sparse linear systems and least squares problems. In Numerical Analysis (Watson, G. A., ed.), Vol. 506 of Lecture Notes in Mathematics, Springer, pp. 122133.
George, A. (1972), Block elimination on finite element systems of equations. In Sparse Matrices and their Applications (Rose, D. J. and Willoughby, R. A., eds), Plenum, pp. 101114.
George, A. (1973), ‘Nested dissection of a regular finite element mesh’, SIAM J. Numer. Anal. 10, 345363.
George, A. (1974), ‘On block elimination for sparse linear systems’, SIAM J. Numer. Anal. 11, 585603.
George, A. (1977a), ‘Numerical experiments using dissection methods to solve $n$-by-$n$ grid problems’, SIAM J. Numer. Anal. 14, 161179.
George, A. (1977b), Solution of linear systems of equations: Direct methods for finite-element problems. In Sparse Matrix Techniques (Barker, V. A., ed.), Vol. 572 of Lecture Notes in Mathematics, Springer, pp. 52101.
George, A. (1980), ‘An automatic one-way dissection algorithm for irregular finite-element problems’, SIAM J. Numer. Anal. 17, 740751.
George, A. (1981), Direct solution of sparse positive definite systems: Some basic ideas and open problems. In Sparse Matrices and their Uses (Duff, I. S., ed.), Academic, pp. 283306.
George, A. and Heath, M. T. (1980), ‘Solution of sparse linear least squares problems using Givens rotations’, Linear Algebra Appl. 34, 6983.
George, A. and Liu, J. W. H. (1975), ‘A note on fill for sparse matrices’, SIAM J. Numer. Anal. 12, 452454.
George, A. and Liu, J. W. H. (1978a), ‘Algorithms for matrix partitioning and the numerical solution of finite element systems’, SIAM J. Numer. Anal. 15, 297327.
George, A. and Liu, J. W. H. (1978b), ‘An automatic nested dissection algorithm for irregular finite element problems’, SIAM J. Numer. Anal. 15, 10531069.
George, A. and Liu, J. W. H. (1979a), ‘The design of a user interface for a sparse matrix package’, ACM Trans. Math. Softw. 5, 139162.
George, A. and Liu, J. W. H. (1979b), ‘An implementation of a pseudo-peripheral node finder’, ACM Trans. Math. Softw. 5, 284295.
George, A. and Liu, J. W. H. (1980a), ‘A fast implementation of the minimum degree algorithm using quotient graphs’, ACM Trans. Math. Softw. 6, 337358.
George, A. and Liu, J. W. H. (1980b), ‘A minimal storage implementation of the minimum degree algorithm’, SIAM J. Numer. Anal. 17, 282299.
George, A. and Liu, J. W. H. (1980c), ‘An optimal algorithm for symbolic factorization of symmetric matrices’, SIAM J. Comput. 9, 583593.
George, A. and Liu, J. W. H. (1981), Computer Solution of Large Sparse Positive Definite Systems, Prentice-Hall.
George, A. and Liu, J. W. H. (1987), ‘Householder reflections versus Givens rotations in sparse orthogonal decomposition’, Linear Algebra Appl. 88, 223238.
George, A. and Liu, J. W. H. (1989), ‘The evolution of the minimum degree ordering algorithm’, SIAM Review 31, 119.
George, A. and Liu, J. W. H. (1999), ‘An object-oriented approach to the design of a user interface for a sparse matrix package’, SIAM J. Matrix Anal. Appl. 20, 953969.
George, A. and Mcintyre, D. R. (1978), ‘On the application of the minimum degree algorithm to finite element systems’, SIAM J. Numer. Anal. 15, 90112.
George, A. and Ng, E. G. (1983), ‘On row and column orderings for sparse least square problems’, SIAM J. Numer. Anal. 20, 326344.
George, A. and Ng, E. G. (1984a), ‘A new release of SPARSPAK: The Waterloo sparse matrix package’, ACM SIGNUM Newsletter 19, 913.
George, A. and Ng, E. G. (1984b), SPARSPAK: Waterloo sparse matrix package, user’s guide for SPARSPAK-B. Technical report CS-84-37, Department of Computer Science, University of Waterloo, Ontario. https://cs.uwaterloo.ca/research/tr/1984/CS-84-37.pdf
George, A. and Ng, E. G. (1985a), ‘A brief description of SPARSPAK: Waterloo sparse linear equations package’, ACM SIGNUM Newsletter 16, 1719.
George, A. and Ng, E. G. (1985b), ‘An implementation of Gaussian elimination with partial pivoting for sparse systems’, SIAM J. Sci. Comput. 6, 390409.
George, A. and Ng, E. G. (1986), ‘Orthogonal reduction of sparse matrices to upper triangular form using Householder transformations’, SIAM J. Sci. Comput. 7, 460472.
George, A. and Ng, E. G. (1987), ‘Symbolic factorization for sparse Gaussian elimination with partial pivoting’, SIAM J. Sci. Comput. 8, 877898.
George, A. and Ng, E. G. (1988), ‘On the complexity of sparse QR and LU factorization of finite-element matrices’, SIAM J. Sci. Comput. 9, 849861.
George, A. and Ng, E. G. (1990), ‘Parallel sparse Gaussian elimination with partial pivoting’, Ann. Oper. Res. 22, 219240.
George, A. and Pothen, A. (1997), ‘An analysis of spectral envelope-reduction via quadratic assignment problems’, SIAM J. Matrix Anal. Appl. 18, 706732.
George, A. and Rashwan, H. (1980), ‘On symbolic factorization of partitioned sparse symmetric matrices’, Linear Algebra Appl. 34, 145157.
George, A. and Rashwan, H. (1985), ‘Auxiliary storage methods for solving finite element systems’, SIAM J. Sci. Comput. 6, 882910.
George, A., Heath, M. T. and Ng, E. G. (1983), ‘A comparison of some methods for solving sparse linear least-squares problems’, SIAM J. Sci. Comput. 4, 177187.
George, A., Heath, M. T. and Ng, E. G. (1984a), ‘Solution of sparse underdetermined systems of linear equations’, SIAM J. Sci. Comput. 5, 988997.
George, A., Heath, M. T. and Plemmons, R. J. (1981), ‘Solution of large-scale sparse least squares problems using auxiliary storage’, SIAM J. Sci. Comput. 2, 416429.
George, A., Heath, M. T., Liu, J. W. H. and Ng, E. G. (1986a), ‘Solution of sparse positive definite systems on a shared-memory multiprocessor’, Intl J. Parallel Program. 15, 309325.
George, A., Heath, M. T., Liu, J. W. H. and Ng, E. G. (1988a), ‘Sparse Cholesky factorization on a local-memory multiprocessor’, SIAM J. Sci. Comput. 9, 327340.
George, A., Heath, M. T., Liu, J. W. H. and Ng, E. G. (1989a), ‘Solution of sparse positive definite systems on a hypercube’, J. Comput. Appl. Math. 27, 129156.
George, A., Heath, M. T., Ng, E. G. and Liu, J. W. H. (1987), ‘Symbolic Cholesky factorization on a local-memory multiprocessor’, Parallel Comput. 5, 8595.
George, A., Liu, J. W. H. and Ng, E. G. (1984b), ‘Row ordering schemes for sparse Givens transformations I: Bipartite graph model’, Linear Algebra Appl. 61, 5581.
George, A., Liu, J. W. H. and Ng, E. G. (1986b), ‘Row ordering schemes for sparse Givens transformations II: Implicit graph model’, Linear Algebra Appl. 75, 203223.
George, A., Liu, J. W. H. and Ng, E. G. (1986c), ‘Row ordering schemes for sparse Givens transformations III: Analysis for a model problem’, Linear Algebra Appl. 75, 225240.
George, A., Liu, J. W. H. and Ng, E. G. (1988b), ‘A data structure for sparse QR and LU factorizations’, SIAM J. Sci. Comput. 9, 100121.
George, A., Liu, J. W. H. and Ng, E. G. (1989b), ‘Communication results for parallel sparse Cholesky factorization on a hypercube’, Parallel Comput. 10, 287298.
George, A., Poole, W. G. and Voigt, R. G. (1978), ‘Incomplete nested dissection for solving $n$-by-$n$ grid problems’, SIAM J. Numer. Anal. 15, 662673.
George, J. A. (1971), Computer implementation of the finite element method. Technical report STAN-CS-71-208, Department of Computer Science, Stanford University.
George, T., Saxena, V., Gupta, A., Singh, A. and Choudhury, A. R. (2011), Multifrontal factorization of sparse SPD matrices on GPUs. In Proc. 2011 IEEE International Parallel Distributed Processing Symposium: IPDPS, pp. 372383.
Geschiere, J. P. and Wijshoff, H. A. G. (1995), ‘Exploiting large grain parallelism in a sparse direct linear system solver’, Parallel Comput. 21, 13391364.
Gibbs, N. E. (1976), ‘Algorithm 509: A hybrid profile reduction algorithm’, ACM Trans. Math. Softw. 2, 378387.
Gibbs, N. E., Poole, W. G. and Stockmeyer, P. K. (1976a), ‘An algorithm for reducing the bandwidth and profile of a sparse matrix’, SIAM J. Numer. Anal. 13, 236250.
Gibbs, N. E., Poole, W. G. and Stockmeyer, P. K. (1976b), ‘A comparison of several bandwidth and reduction algorithms’, ACM Trans. Math. Softw. 2, 322330.
Gilbert, J. R. (1980), ‘A note on the NP-completeness of vertex elimination on directed graphs’, SIAM J. Alg. Discrete Methods 1, 292294.
Gilbert, J. R. (1994), ‘Predicting structure in sparse matrix computations’, SIAM J. Matrix Anal. Appl. 15, 6279.
Gilbert, J. R. and Grigori, L. (2003), ‘A note on the column elimination tree’, SIAM J. Matrix Anal. Appl. 25, 143151.
Gilbert, J. R. and Hafsteinsson, H. (1990), ‘Parallel symbolic factorization of sparse linear systems’, Parallel Comput. 14, 151162.
Gilbert, J. R. and Liu, J. W. H. (1993), ‘Elimination structures for unsymmetric sparse LU factors’, SIAM J. Matrix Anal. Appl. 14, 334354.
Gilbert, J. R. and Ng, E. G. (1993), Predicting structure in nonsymmetric sparse matrix factorizations. In Graph Theory and Sparse Matrix Computation (George, A., Gilbert, J. R. and Liu, J. W. H., eds), Vol. 56 of IMA Volumes in Applied Mathematics, Springer, pp. 107139.
Gilbert, J. R. and Peierls, T. (1988), ‘Sparse partial pivoting in time proportional to arithmetic operations’, SIAM J. Sci. Comput. 9, 862874.
Gilbert, J. R. and Schreiber, R. (1992), ‘Highly parallel sparse Cholesky factorization’, SIAM J. Sci. Comput. 13, 11511172.
Gilbert, J. R. and Tarjan, R. E. (1987), ‘The analysis of a nested dissection algorithm’, Numer. Math. 50, 377404.
Gilbert, J. R. and Zmijewski, E. (1987), ‘A parallel graph partitioning algorithm for a message-passing multiprocessor’, Intl J. Parallel Program. 16, 427449.
Gilbert, J. R., Li, X. S., Ng, E. G. and Peyton, B. W. (2001), ‘Computing row and column counts for sparse QR and LU factorization’, BIT Numer. Math. 41, 693710.
Gilbert, J. R., Miller, G. L. and Teng, S. H. (1998), ‘Geometric mesh partitioning: Implementation and experiments’, SIAM J. Sci. Comput. 19, 20912110.
Gilbert, J. R., Moler, C. and Schreiber, R. (1992), ‘Sparse matrices in MATLAB: Design and implementation’, SIAM J. Matrix Anal. Appl. 13, 333356.
Gilbert, J. R., Ng, E. G. and Peyton, B. W. (1994), ‘An efficient algorithm to compute row and column counts for sparse Cholesky factorization’, SIAM J. Matrix Anal. Appl. 15, 10751091.
Gilbert, J. R., Ng, E. G. and Peyton, B. W. (1997), ‘Separators and structure prediction in sparse orthogonal factorization’, Linear Algebra Appl. 262, 8397.
Gillespie, M. I. and Olesky, D. D. (1995), ‘Ordering Givens rotations for sparse QR factorization’, SIAM J. Matrix Anal. Appl. 16, 10241041.
Golub, G. H. and Van Loan, C. F. (2012), Matrix Computations, fourth edition, Johns Hopkins Studies in the Mathematical Sciences, The Johns Hopkins University Press.
González, P., Cabaleiro, J. C. and Pena, T. F. (2000), ‘On parallel solvers for sparse triangular systems’, J. Systems Architecture 46, 675685.
Goto, K. and van de Geijn, R. (2008), ‘High performance implementation of the level-3 BLAS’, ACM Trans. Math. Softw. 35, 14:1–14:14.
Gould, N. I. M. and Scott, J. A. (2004), ‘A numerical evaluation of HSL packages for the direct solution of large sparse, symmetric linear systems of equations’, ACM Trans. Math. Softw. 30, 300325.
Gould, N. I. M., Scott, J. A. and Hu, Y. (2007), ‘A numerical evaluation of sparse solvers for symmetric systems’, ACM Trans. Math. Softw. 33, 10:1–10:32.
Grigori, L. and Li, X. S. (2007), ‘Towards an accurate performance modelling of parallel sparse factorization’, Appl. Algebra Eng. Comm. Comput. 18, 241261.
Grigori, L., Boman, E., Donfack, S. and Davis, T. A. (2010), ‘Hypergraph-based unsymmetric nested dissection ordering for sparse LU factorization’, SIAM J. Sci. Comput. 32, 34263446.
Grigori, L., Cosnard, M. and Ng, E. G. (2007a), ‘On the row merge tree for sparse LU factorization with partial pivoting’, BIT Numer. Math. 47, 4576.
Grigori, L., Demmel, J. W. and Li, X. S. (2007b), ‘Parallel symbolic factorization for sparse LU with static pivoting’, SIAM J. Sci. Comput. 29, 12891314.
Grigori, L., Gilbert, J. R. and Cosnard, M. (2009), ‘Symbolic and exact structure prediction for sparse Gaussian elimination with partial pivoting’, SIAM J. Matrix Anal. Appl. 30, 15201545.
Grimes, R. G., Pierce, D. J. and Simon, H. D. (1990), ‘A new algorithm for finding a pseudoperipheral node in a graph’, SIAM J. Matrix Anal. Appl. 11, 323334.
Guermouche, A. and L’Excellent, J.-Y. (2006), ‘Constructing memory-minimizing schedules for multifrontal methods’, ACM Trans. Math. Softw. 32, 1732.
Guermouche, A., L’Excellent, J.-Y. and Utard, G. (2003), ‘Impact of reordering on the memory of a multifrontal solver’, Parallel Comput. 29, 11911218.
Gunnels, J. A., Gustavson, F. G., Henry, G. M. and van de Geijn, R. A. (2001), ‘FLAME: Formal linear algebra methods environment’, ACM Trans. Math. Softw. 27, 422455.
Gupta, A. (1996a), Fast and effective algorithms for graph partitioning and sparse matrix ordering. Technical report RC 20496 (90799), IBM Research Division, Yorktown Heights, NY.
Gupta, A. (1996b), WGPP: Watson graph partitioning. Technical report RC 20453 (90427), IBM Research Division, Yorktown Heights, NY.
Gupta, A. (2002a), ‘Improved symbolic and numerical factorization algorithms for unsymmetric sparse matrices’, SIAM J. Matrix Anal. Appl. 24, 529552.
Gupta, A. (2002b), ‘Recent advances in direct methods for solving unsymmetric sparse systems of linear equations’, ACM Trans. Math. Softw. 28, 301324.
Gupta, A. (2007), ‘A shared- and distributed-memory parallel general sparse direct solver’, Appl. Algebra Eng. Comm. Comput. 18, 263277.
Gupta, A., Karypis, G. and Kumar, V. (1997), ‘Highly scalable parallel algorithms for sparse matrix factorization’, IEEE Trans. Parallel Distrib. Systems 8, 502520.
Gustavson, F. G. (1972), Some basic techniques for solving sparse systems of linear equations. In Sparse Matrices and their Applications (Rose, D. J. and Willoughby, R. A., eds), Plenum, pp. 4152.
Gustavson, F. G. (1976), Finding the block lower triangular form of a sparse matrix. In Sparse Matrix Computations (Bunch, J. R. and Rose, D. J., eds), Academic, pp. 275290.
Gustavson, F. G. (1978), ‘Two fast algorithms for sparse matrices: Multiplication and permuted transposition’, ACM Trans. Math. Softw. 4, 250269.
Gustavson, F. G., Liniger, W. M. and Willoughby, R. A. (1970), ‘Symbolic generation of an optimal Crout algorithm for sparse systems of linear equations’, J. Assoc. Comput. Mach. 17, 87109.
Hachtel, G., Brayton, R. and Gustavson, F. (1971), ‘The sparse tableau approach to network analysis and design’, IEEE Trans. Circuit Theory 18, 101113.
Hadfield, S. M. and Davis, T. A. (1994), Potential and achievable parallelism in the unsymmetric-pattern multifrontal LU factorization method for sparse matrices. In Proc. 5th SIAM Conference on Applied Linear Algebra, SIAM, pp. 387391.
Hadfield, S. M. and Davis, T. A. (1995), ‘The use of graph theory in a parallel multifrontal method for sequences of unsymmetric pattern sparse matrices’, Congress. Numer. 108, 4352.
Hager, W. W. (2002), ‘Minimizing the profile of a symmetric matrix’, SIAM J. Sci. Comput. 23, 17991816.
Hare, D. R., Johnson, C. R., Olesky, D. D. and van den Driessche, P. (1993), ‘Sparsity analysis of the QR factorization’, SIAM J. Matrix Anal. Appl. 14, 665669.
He, K., Tan, S. X.-D., Wang, H. and Shi, G. (2015), ‘GPU-accelerated parallel sparse LU factorization method for fast circuit analysis’, IEEE Trans. VLSI Sys. 24, 11401150.
Heath, M. T. (1982), ‘Some extensions of an algorithm for sparse linear least squares problems’, SIAM J. Sci. Comput. 3, 223237.
Heath, M. T. (1984), ‘Numerical methods for large sparse linear least squares problems’, SIAM J. Sci. Comput. 5, 497513.
Heath, M. T. and Raghavan, P. (1995), ‘A Cartesian parallel nested dissection algorithm’, SIAM J. Matrix Anal. Appl. 16, 235253.
Heath, M. T. and Raghavan, P. (1997), ‘Performance of a fully parallel sparse solver’, Intl J. Supercomp. Appl. High Perf. Comput. 11, 4964.
Heath, M. T. and Sorensen, D. C. (1986), ‘A pipelined Givens method for computing the QR factorization of a sparse matrix’, Linear Algebra Appl. 77, 189203.
Heath, M. T., Ng, E. G. and Peyton, B. W. (1991), ‘Parallel algorithms for sparse linear systems’, SIAM Review 33, 420460.
Heggernes, P. and Peyton, B. W. (2008), ‘Fast computation of minimal fill inside a given elimination ordering’, SIAM J. Matrix Anal. Appl. 30, 14241444.
Hellerman, E. and Rarick, D. C. (1971), ‘Reinversion with the preassigned pivot procedure’, Math. Program. 1, 195216.
Hellerman, E. and Rarick, D. C. (1972), The partitioned preassigned pivot procedure (P4). In Sparse Matrices and their Applications (Rose, D. J. and Willoughby, R. A., eds), Plenum, pp. 6776.
Hendrickson, B. and Leland, R. (1995a), The Chaco users guide: Version 2.0. Technical report SAND95-2344, Sandia National Laboratories.
Hendrickson, B. and Leland, R. (1995b), A multilevel algorithm for partitioning graphs. In Supercomputing ’95: Proc. 1995 ACM/IEEE Conference on Supercomputing, p. 28.
Hendrickson, B. and Rothberg, E. (1998), ‘Improving the runtime and quality of nested dissection ordering’, SIAM J. Sci. Comput. 20, 468489.
Hénon, P., Ramet, P. and Roman, J. (2002), ‘PaStiX: A high-performance parallel direct solver for sparse symmetric definite systems’, Parallel Comput. 28, 301321.
Ho, C.-W. and Lee, R. C. T. (1990), ‘A parallel algorithm for solving sparse triangular systems’, IEEE Trans. Comput. 39, 848852.
Hogg, J. D. and Scott, J. A. (2013a), ‘An efficient analyse phase for element problems’, Numer. Linear Algebra Appl. 20, 397412.
Hogg, J. D. and Scott, J. A. (2013b), ‘New parallel sparse direct solvers for multicore architectures’, Algorithms 6, 702725.
Hogg, J. D. and Scott, J. A. (2013c), ‘Optimal weighted matchings for rank-deficient sparse matrices’, SIAM J. Matrix Anal. Appl. 34, 14311447.
Hogg, J. D. and Scott, J. A. (2013d), ‘Pivoting strategies for tough sparse indefinite systems’, ACM Trans. Math. Softw. 40, 4:1–4:19.
Hogg, J. D., Ovtchinnikov, E. and Scott, J. A. (2016), ‘A sparse symmetric indefinite direct solver for GPU architectures’, ACM Trans. Math. Softw. 42, 1:1–1:25.
Hogg, J. D., Reid, J. K. and Scott, J. A. (2010), ‘Design of a multicore sparse Cholesky factorization using DAGs’, SIAM J. Sci. Comput. 32, 36273649.
Hoit, M. and Wilson, E. L. (1983), ‘An equation numbering algorithm based on a minimum front criteria’, Comput. Struct. 16, 225239.
Hood, P. (1976), ‘Frontal solution program for unsymmetric matrices’, Intl J. Numer. Methods Eng. 10, 379400.
Hopcroft, J. E. and Karp, R. M. (1973), ‘An $n^{5/2}$ algorithm for maximum matchings in bipartite graphs’, SIAM J. Comput. 2, 225231.
Huang, J. W. and Wing, O. (1979), ‘Optimal parallel triangulation of a sparse matrix’, IEEE Trans. Circuits and Systems CAS‐26, 726732.
Hulbert, L. and Zmijewski, E. (1991), ‘Limiting communication in parallel sparse Cholesky factorization’, SIAM J. Sci. Comput. 12, 11841197.
Igual, F. D., Chan, E., Quintana-Ortí, E. S., Quintana-Ortí, G., van de Geijn, R. A. and Van Zee, F. G. (2012), ‘The FLAME approach: From dense linear algebra algorithms to high-performance multi-accelerator implementations’, J. Parallel Distrib. Comput. 72, 11341143.
Irons, B. M. (1970), ‘A frontal solution program for finite element analysis’, Intl J. Numer. Methods Eng. 2, 532.
Irony, D., Shklarski, G. and Toledo, S. (2004), ‘Parallel and fully recursive multifrontal sparse Cholesky’, Future Generation Comp. Sys. 20, 425440.
Jennings, A. (1966), ‘A compact storage scheme for the solution of symmetric linear simultaneous equations’, Comput.J. 9, 281285.
Jess, J. A. G. and Kees, H. G. M. (1982), ‘A data structure for parallel LU decomposition’, IEEE Trans. Comput. C‐31, 231239.
Joshi, M., Karypis, G., Kumar, V., Gupta, A. and Gustavson, F. (1999), PSPASES: An efficient and scalable parallel sparse direct solver. In Proc. 9th SIAM Conference on Parallel Processing for Scientific Computing (Yang, T., ed.), Vol. 515 of Kluwer International Series in Engineering and Science, Kluwer. www-users.cs.umn.edu/∼mjoshi/pspases/
Karypis, G., Aggarwal, R., Kumar, V. and Shekhar, S. (1999), ‘Multilevel hypergraph partitioning: Applications in VLSI domain’, IEEE Trans. Very Large Scale Integration (VLSI) Systems 7, 6979.
Karypis, G. and Kumar, V. (1998a), ‘A fast and high quality multilevel scheme for partitioning irregular graphs’, SIAM J. Sci. Comput. 20, 359392.
Karypis, G. and Kumar, V. (1998b), hMETIS 1.5: A hypergraph partitioning package. Technical report, Department of Computer Science and Engineering University of Minnesota.
Karypis, G. and Kumar, V. (1998c), ‘A parallel algorithm for multilevel graph partitioning and sparse matrix ordering’, J. Parallel Distrib. Comput. 48, 7195.
Karypis, G. and Kumar, V. (2000), ‘Multilevel k-way hypergraph partitioning’, VLSI Design 11, 285300.
Kayaaslan, E., Pinar, A., Çatalyürek, U. V. and Aykanat, C. (2012), ‘Partitioning hypergraphs in scientific computing applications through vertex separators on graphs’, SIAM J. Sci. Comput. 34, A970A992.
Kernighan, B. W. and Lin, S. (1970), ‘An efficient heuristic procedure for partitioning graphs’, Bell System Tech. J. 49, 291307.
Kim, K. and Eijkhout, V. (2014), ‘A parallel sparse direct solver via hierarchical DAG scheduling’, ACM Trans. Math. Softw. 41, 3:1–3:27.
King, I. P. (1970), ‘An automatic reordering scheme for simultaneous equations derived from network systems’, Intl J. Numer. Methods Eng. 2, 523533.
Knuth, D. E. (1972), ‘George Forsythe and the development of computer science’, Comm. Assoc. Comput. Mach. 15, 721726.
Koster, J. and Bisseling, R. H. (1994), An improved algorithm for parallel sparse LU decomposition on a distributed-memory multiprocessor. In Proc. 5th SIAM Conference on Applied Linear Algebra, SIAM, pp. 397401.
Kratzer, S. G. (1992), ‘Sparse QR factorization on a massively parallel computer’, J. Supercomputing 6, 237255.
Kratzer, S. G. and Cleary, A. J. (1993), Sparse matrix factorization on SIMD parallel computers. In Graph Theory and Sparse Matrix Computation (George, A., Gilbert, J. R. and Liu, J. W. H., eds), Vol. 56 of IMA Volumes in Applied Mathematics, Springer, pp. 211228.
Krawezik, G. and Poole, G. (2009), Accelerating the ANSYS direct sparse solver with GPUs. In Proc. Symposium on Application Accelerators in High Performance Computing: SAAHPC, NCSA, Urbana-Champaign, IL.
Kruskal, C. P., Rudolph, L. and Snir, M. (1989), Techniques for parallel manipulation of sparse matrices. In Theoret. Comput. Sci.,Vol. 64, pp. 135157.
Kumar, B., Eswar, K., Sadayappan, P. and Huang, C.-H. (1994), A reordering and mapping algorithm for parallel sparse Cholesky factorization. In Proc. Scalable High-Performance Computing Conference, 1994, pp. 803810.
Kumar, P. S., Kumar, M. K. and Basu, A. (1992), ‘A parallel algorithm for elimination tree computation and symbolic factorization’, Parallel Comput. 18, 849856.
Kumar, P. S., Kumar, M. K. and Basu, A. (1993), ‘Parallel algorithms for sparse triangular system solution’, Parallel Comput. 19, 187196.
Kumfert, G. K. and Pothen, A. (1997), ‘Two improved algorithms for reducing the envelope and wavefront’, BIT Numer. Math. 37, 559590.
Kundert, K. S. (1986), Sparse matrix techniques and their applications to circuit simulation. In Circuit Analysis, Simulation and Design (Ruehli, A. E., ed.), North-Holland.
Lacoste, X., Ramet, P., Faverge, M., Ichitaro, Y. and Dongarra, J. (2012), Sparse direct solvers with accelerators over DAG runtimes. Technical report RR-7972, INRIA, Bordeaux.
Law, K. H. (1985), ‘Sparse matrix factor modification in structural reanalysis’, Intl J. Numer. Methods Eng. 21, 3763.
Law, K. H. (1989), ‘On updating the structure of sparse matrix factors’, Intl J. Numer. Methods Eng. 28, 23392360.
Law, K. H. and Fenves, S. J. (1986), ‘A node-addition model for symbolic factorization’, ACM Trans. Math. Softw. 12, 3750.
Law, K. H. and Mackay, D. R. (1993), ‘A parallel row-oriented sparse solution method for finite element structural analysis’, Intl J. Numer. Methods Eng. 36, 28952919.
Lee, H., Kim, J., Hong, S. J. and Lee, S. (2003), ‘Task scheduling using a block dependency DAG for block-oriented sparse Cholesky factorization’, Parallel Comput. 29, 135159.
Leuze, M. (1989), ‘Independent set orderings for parallel matrix factorization by Gaussian elimination’, Parallel Comput. 10, 177191.
Levy, R. (1971), ‘Resequencing of the structural stiffness matrix to improve computational efficiency’, Quarterly Technical Review 1, 6170.
Lewis, J. G. (1982a), ‘Algorithm 582: The Gibbs–Poole–Stockmeyer and Gibbs–King algorithms for reordering sparse matrices’, ACM Trans. Math. Softw. 8, 190194.
Lewis, J. G. (1982b), ‘Implementation of the Gibbs–Poole–Stockmeyer and Gibbs–King algorithms’, ACM Trans. Math. Softw. 8, 180189.
Lewis, J. G. and Simon, H. D. (1988), ‘The impact of hardware gather/scatter on sparse Gaussian elimination’, SIAM J. Sci. Comput. 9, 304311.
Lewis, J. G., Peyton, B. W. and Pothen, A. (1989), ‘A fast algorithm for reordering sparse matrices for parallel factorization’, SIAM J. Sci. Comput. 10, 11461173.
L’Excellent, J.-Y. and Sid-Lakhdar, W. M. (2014), ‘Introduction of shared-memory parallelism in a distributed-memory multifrontal solver’, Parallel Comput. 40, 3446.
Li, X. S. (2005), ‘An overview of SuperLU: Algorithms, implementation, and user interface’, ACM Trans. Math. Softw. 31, 302325.
Li, X. S. (2008), ‘Evaluation of SuperLU on multicore architectures’, J. Physics: Conference Series 125, 012079.
Li, X. S. (2013), Direct solvers for sparse matrices. Technical report, Lawrence Berkeley National Laboratory, Berkeley. http://crd-legacy.lbl.gov/∼xiaoye/SuperLU/SparseDirectSurvey.pdf
Li, X. S. and Demmel, J. W. (2003), ‘SuperLU_DIST: A scalable distributed-memory sparse direct solver for unsymmetric linear systems’, ACM Trans. Math. Softw. 29, 110140.
Lin, T. D. and Mah, R. S. H. (1977), ‘Hierarchical partition: A new optimal pivoting algorithm’, Math. Program. 12, 260278.
Lin, W.-Y. and Chen, C.-L. (1999), ‘Minimum communication cost reordering for parallel sparse Cholesky factorization’, Parallel Comput. 25, 943967.
Lin, W.-Y. and Chen, C.-L. (2000), ‘On evaluating elimination tree based parallel sparse Cholesky factorizations’, Intl J. Comput. Math. 74, 361377.
Lin, W.-Y. and Chen, C.-L. (2005), ‘On optimal reorderings of sparse matrices for parallel Cholesky factorizations’, SIAM J. Matrix Anal. Appl. 27, 2445.
Lipton, R. J. and Tarjan, R. E. (1979), ‘A separator theorem for planar graphs’, SIAM J. Appl. Math. 36, 177189.
Lipton, R. J., Rose, D. J. and Tarjan, R. E. (1979), ‘Generalized nested dissection’, SIAM J. Numer. Anal. 16, 346358.
Liu, J. W. H. (1985), ‘Modification of the minimum-degree algorithm by multiple elimination’, ACM Trans. Math. Softw. 11, 141153.
Liu, J. W. H. (1986a), ‘A compact row storage scheme for Cholesky factors using elimination trees’, ACM Trans. Math. Softw. 12, 127148.
Liu, J. W. H. (1986b), ‘Computational models and task scheduling for parallel sparse Cholesky factorization’, Parallel Comput. 3, 327342.
Liu, J. W. H. (1986c), ‘On general row merging schemes for sparse Givens transformations’, SIAM J. Sci. Comput. 7, 11901211.
Liu, J. W. H. (1986d), ‘On the storage requirement in the out-of-core multifrontal method for sparse factorization’, ACM Trans. Math. Softw. 12, 249264.
Liu, J. W. H. (1987a), ‘An adaptive general sparse out-of-core Cholesky factorization scheme’, SIAM J. Sci. Comput. 8, 585599.
Liu, J. W. H. (1987b), ‘An application of generalized tree pebbling to sparse matrix factorization’, SIAM J. Alg. Discrete Methods 8, 375395.
Liu, J. W. H. (1987c), ‘A note on sparse factorization in a paging environment’, SIAM J. Sci. Comput. 8, 10851088.
Liu, J. W. H. (1987d), ‘On threshold pivoting in the multifrontal method for sparse indefinite systems’, ACM Trans. Math. Softw. 13, 250261.
Liu, J. W. H. (1987e), ‘A partial pivoting strategy for sparse symmetric matrix decomposition’, ACM Trans. Math. Softw. 13, 173182.
Liu, J. W. H. (1988a), ‘Equivalent sparse matrix reordering by elimination tree rotations’, SIAM J. Sci. Comput. 9, 424444.
Liu, J. W. H. (1988b), ‘A tree model for sparse symmetric indefinite matrix factorization’, SIAM J. Matrix Anal. Appl. 9, 2639.
Liu, J. W. H. (1989a), ‘A graph partitioning algorithm by node separators’, ACM Trans. Math. Softw. 15, 198219.
Liu, J. W. H. (1989b), ‘The minimum degree ordering with constraints’, SIAM J. Sci. Comput. 10, 11361145.
Liu, J. W. H. (1989c), ‘The multifrontal method and paging in sparse Cholesky factorization’, ACM Trans. Math. Softw. 15, 310325.
Liu, J. W. H. (1989d), ‘Reordering sparse matrices for parallel elimination’, Parallel Comput. 11, 7391.
Liu, J. W. H. (1990), ‘The role of elimination trees in sparse factorization’, SIAM J. Matrix Anal. Appl. 11, 134172.
Liu, J. W. H. (1991), ‘A generalized envelope method for sparse factorization by rows’, ACM Trans. Math. Softw. 17, 112129.
Liu, J. W. H. (1992), ‘The multifrontal method for sparse matrix solution: Theory and practice’, SIAM Review 34, 82109.
Liu, J. W. H. and Mirzaian, A. (1989), ‘A linear reordering algorithm for parallel pivoting of chordal graphs’, SIAM J. Discrete Math. 2, 100107.
Liu, J. W. H. and Sherman, A. H. (1976), ‘Comparative analysis of the Cuthill–McKee and the reverse Cuthill–McKee ordering algorithms for sparse matrices’, SIAM J. Numer. Anal. 13, 198213.
Liu, J. W. H., Ng, E. G. and Peyton, B. W. (1993), ‘On finding supernodes for sparse matrix computations’, SIAM J. Matrix Anal. Appl. 14, 242252.
Lu, S. M. and Barlow, J. L. (1996), ‘Multifrontal computation with the orthogonal factors of sparse matrices’, SIAM J. Matrix Anal. Appl. 17, 658679.
Lucas, R. F., Blank, T. and Tiemann, J. J. (1987), ‘A parallel solution method for large sparse systems of equations’, IEEE Trans. Computer-Aided Design Integ. Circ. Sys. 6, 981991.
Lucas, R. F., Wagenbreth, G., Davis, D. and Grimes, R. G. (2010), Multifrontal computations on GPUs and their multi-core hosts. In VECPAR’10: Proc. 9th International Meeting for High Performance Computing for Computational Science. http://vecpar.fe.up.pt/2010/papers/5.php
Luce, R. and Ng, E. G. (2014), ‘On the minimum FLOPs problem in the sparse Cholesky factorization’, SIAM J. Matrix Anal. Appl. 35, 121.
Manne, F. and Haffsteinsson, H. (1995), ‘Efficient sparse Cholesky factorization on a massively parallel SIMD computer’, SIAM J. Sci. Comput. 16, 934950.
Markowitz, H. M. (1957), ‘The elimination form of the inverse and its application to linear programming’, Management Sci. 3, 255269.
Marro, L. (1986), ‘A linear time implementation of profile reduction algorithms for sparse matrices’, SIAM J. Sci. Comput. 7, 12121231.
Matstoms, P. (1994), ‘Sparse QR factorization in MATLAB’, ACM Trans. Math. Softw. 20, 136159.
Matstoms, P. (1995), ‘Parallel sparse QR factorization on shared memory architectures’, Parallel Comput. 21, 473486.
Mayer, J. (2009), ‘Parallel algorithms for solving linear systems with sparse triangular matrices’, Computing 86, 291312.
Mcnamee, J. M. (1971), ‘ACM Algorithm 408: A sparse matrix package I’, Comm. Assoc. Comput. Mach. 14, 265273.
Mcnamee, J. M. (1983a), ‘Algorithm 601: A sparse matrix package II: Special cases’, ACM Trans. Math. Softw. 9, 344345.
Mcnamee, J. M. (1983b), ‘A sparse matrix package II: Special cases’, ACM Trans. Math. Softw. 9, 340343.
Melhem, R. G. (1988), ‘A modified frontal technique suitable for parallel systems’, SIAM J. Sci. Comput. 9, 289303.
Meshar, O., Irony, D. and Toledo, S. (2006), ‘An out-of-core sparse symmetric-indefinite factorization method’, ACM Trans. Math. Softw. 32, 445471.
Miller, G. L., Teng, S. H., Thurston, W. and Vavasis, S. A. (1993), Automatic mesh partitioning. In Graph Theory and Sparse Matrix Computation (George, A., Gilbert, J. R. and Liu, J. W. H., eds), Vol. 56 of IMA Volumes in Applied Mathematics, Springer, pp. 5784.
Nakhla, M., Singhal, K. and Vlach, J. (1974), ‘An optimal pivoting order for the solution of sparse systems of equations’, IEEE Trans. Circuits and Systems CAS‐21, 222225.
Ng, E. G. (1991), ‘A scheme for handling rank-deficiency in the solution of sparse linear least squares problems’, SIAM J. Sci. Comput. 12, 11731183.
Ng, E. G. (1993), ‘Supernodal symbolic Cholesky factorization on a local-memory multiprocessor’, Parallel Comput. 19, 153162.
Ng, E. G. (2013), Sparse matrix methods. Chapter 53 of Handbook of Linear Algebra, second edition, Chapman & Hall/CRC, pp. 931951.
Ng, E. G. and Peyton, B. W. (1992), ‘A tight and explicit representation of Q in sparse QR factorization’, IMA Preprint Series.
Ng, E. G. and Peyton, B. W. (1993a), ‘Block sparse Cholesky algorithms on advanced uniprocessor computers’, SIAM J. Sci. Comput. 14, 10341056.
Ng, E. G. and Peyton, B. W. (1993b), ‘A supernodal Cholesky factorization algorithm for shared-memory multiprocessors’, SIAM J. Sci. Comput. 14, 761769.
Ng, E. G. and Peyton, B. W. (1996), ‘Some results on structure prediction in sparse QR factorization’, SIAM J. Matrix Anal. Appl. 17, 443459.
Ng, E. G. and Raghavan, P. (1999), ‘Performance of greedy ordering heuristics for sparse Cholesky factorization’, SIAM J. Matrix Anal. Appl. 20, 902914.
Norin, R. S. and Pottle, C. (1971), ‘Effective ordering of sparse matrices arising from nonlinear electrical networks’, IEEE Trans. Circuit Theory CT‐18, 139145.
Oliveira, S. (2001), ‘Exact prediction of QR fill-in by row-merge trees’, SIAM J. Sci. Comput. 22, 19621973.
Olschowka, M. and Neumaier, A. (1996), ‘A new pivoting strategy for Gaussian elimination’, Linear Algebra Appl. 240, 131151.
Ong, J. H. (1987), ‘An algorithm for frontwidth reduction’, J. Sci. Comput. 2, 159173.
Osterby, O. and Zlatev, Z. (1983), Direct Methods for Sparse Matrices, Vol. 157 of Lecture Notes in Computer Science, Springer. Review by Eisenstat at: http://dx.doi.org/10.1137/1028128
Ostromsky, T., Hansen, P. C. and Zlatev, Z. (1998), ‘A coarse-grained parallel QR-factorization algorithm for sparse least squares problems’, Parallel Comput. 24, 937964.
Ostrouchov, G. (1993), ‘Symbolic Givens reduction and row-ordering in large sparse least squares problems’, SIAM J. Matrix Anal. Appl. 8, 248264.
Padmini, M. V., Madan, B. B. and Jain, B. N. (1998), ‘Reordering for parallelism’, Intl J. Comput. Math. 67, 373390.
Paige, C. C. and Saunders, M. A. (1982), ‘LSQR: An algorithm for sparse linear equations and sparse least squares’, ACM Trans. Math. Softw. 8, 4371.
Papadimitriou, C. H. (1976), ‘The NP-completeness of the bandwidth minimization problem’, Computing 16, 263270.
Parter, S. V. (1961), ‘The use of linear graphs in Gauss elimination’, SIAM Review 3, 119130.
Pellegrini, F. (2012), Scotch and PT-Scotch graph partitioning software. Chapter 14 of Combinatorial Scientific Computing (Schenk, O., ed.), Chapman & Hall/ CRC Computational Science, pp. 373406.
Pellegrini, F., Roman, J. and Amestoy, P. R. (2000), ‘Hybridizing nested dissection and halo approximate minimum degree for efficient sparse matrix ordering’, Concurrency: Pract. Exp. 12, 6884.
Peters, F. J. (1984), ‘Parallel pivoting algorithms for sparse symmetric matrices’, Parallel Comput. 1, 99110.
Peters, F. J. (1985), Parallelism and sparse linear equations. In Sparsity and its Applications (Evans, D. J., ed.), Cambridge University Press, pp. 285301.
Peters, G. and Wilkinson, J. H. (1970), ‘The least squares problem and pseudo-inverses’, Comput. J. 13, 309316.
Peyton, B. W. (2001), ‘Minimal orderings revisited’, SIAM J. Matrix Anal. Appl. 23, 271294.
Peyton, B. W., Pothen, A. and Yuan, X. (1993), ‘Partitioning a chordal graph into transitive subgraphs for parallel sparse triangular solution’, Linear Algebra Appl. 192, 329354.
Peyton, B. W., Pothen, A. and Yuan, X. (1995), ‘A clique tree algorithm for partitioning a chordal graph into transitive subgraphs’, Linear Algebra Appl. 223/224, 553588.
Pierce, D. J. and Lewis, J. G. (1997), ‘Sparse multifrontal rank revealing QR factorization’, SIAM J. Matrix Anal. Appl. 18, 159180.
Pierce, D. J., Hung, Y., Liu, C.-C., Tsai, Y.-H., Wang, W. and Yu, D. (2009), Sparse multifrontal performance gains via NVIDIA GPU. In Workshop on GPU Supercomputing, National Taiwan University, Taipei. http://cqse.ntu.edu.tw/cqse/gpu2009.html
Pina, H. L. G. (1981), ‘An algorithm for frontwidth reduction’, Intl J. Numer. Methods Eng. 17, 15391546.
Pissanetsky, S. (1984), Sparse Matrix Technology, Academic.
Pothen, A. (1993), ‘Predicting the structure of sparse orthogonal factors’, Linear Algebra Appl. 194, 183204.
Pothen, A. (1996), Graph partitioning algorithms with applications to scientific computing. In Parallel Numerical Algorithms (Keyes, D. E., Sameh, A. H. and Venkatakrishnan, V., eds), Kluwer Academic, pp. 323368.
Pothen, A. and Alvarado, F. L. (1992), ‘A fast reordering algorithm for parallel sparse triangular solution’, SIAM J. Sci. Comput. 13, 645653.
Pothen, A. and Fan, C. (1990), ‘Computing the block triangular form of a sparse matrix’, ACM Trans. Math. Softw. 16, 303324.
Pothen, A. and Sun, C. (1990), Compact clique tree data structures in sparse matrix factorizations. Chapter 12 of Large Scale Numerical Optimization (Coleman, T. F. and Li, Y., eds), SIAM.
Pothen, A. and Sun, C. (1993), ‘A mapping algorithm for parallel sparse Cholesky factorization’, SIAM J. Sci. Comput. 14, 12531257.
Pothen, A. and Toledo, S. (2004), Elimination structures in scientific computing. Chapter 59 of Handbook on Data Structures and Applications (Mehta, D. and Sahni, S., eds), Chapman & Hall/CRC.
Pothen, A., Simon, H. D. and Liou, K. (1990), ‘Partitioning sparse matrices with eigenvectors of graphs’, SIAM J. Matrix Anal. Appl. 11, 430452.
Pouransari, H., Coulier, P. and Darve, E. (2015), Fast hierarchical solvers for sparse matrices. Technical report, Department of Mechanical Engineering, Stanford University, and Department of Civil Engineering, KU Leuven. arXiv:1510.07363
Raghavan, P. (1995), ‘Distributed sparse Gaussian elimination and orthogonal factorization’, SIAM J. Sci. Comput. 16, 14621477.
Raghavan, P. (1997), ‘Parallel ordering using edge contraction’, Parallel Comput. 23, 10451067.
Raghavan, P. (1998), ‘Efficient parallel sparse triangular solution using selective inversion’, Parallel Processing Letters 8, 2940.
Raghavan, P. (2002), DSCPACK: Domain-separator codes for the parallel solution of sparse linear systems. Technical report CSE-02-004, Penn State University, State College, PA. www.cse.psu.edu/∼pxr3/software.html
Rauber, T., Rünger, G. and Scholtes, C. (1999), ‘Scalability of sparse Cholesky factorization’, Intl J. High Speed Computing 10, 1952.
Razzaque, A. (1980), ‘Automatic reduction of frontwidth for finite element analysis’, Intl J. Numer. Methods Eng. 25, 13151324.
Reid, J. K. (1971), Large Sparse Sets of Linear Equations, Academic.
Reid, J. K. (1974), Direct methods for sparse matrices. In Software for Numerical Mathematics (Evans, D. J., ed.), Academic, pp. 2948.
Reid, J. K. (1977a), Solution of linear systems of equations: Direct methods (general). In Sparse Matrix Techniques (Barker, V. A., ed.), Vol. 572 of Lecture Notes in Mathematics, Springer, pp. 102129.
Reid, J. K. (1977b), Sparse matrices. In The State of the Art in Numerical Analysis (Jacobs, D. A. H., ed.), Academic, pp. 85146.
Reid, J. K. (1981), Frontal methods for solving finite-element systems of linear equations. In Sparse Matrices and their Uses (Duff, I. S., ed.), Academic, pp. 265281.
Reid, J. K. (1982), ‘A sparsity-exploiting variant of the Bartels–Golub decomposition for linear programming bases’, Math. Program. 24, 5569.
Reid, J. K. and Scott, J. A. (1999), ‘Ordering symmetric sparse matrices for small profile and wavefront’, Intl J. Numer. Methods Eng. 45, 17371755.
Reid, J. K. and Scott, J. A. (2001), ‘Reversing the row order for the row-by-row frontal method’, Numer. Linear Algebra Appl. 8, 16.
Reid, J. K. and Scott, J. A. (2002), ‘Implementing Hager’s exchange methods for matrix profile reduction’, ACM Trans. Math. Softw. 28, 377391.
Reid, J. K. and Scott, J. A. (2009a), ‘An efficient out-of-core multifrontal solver for large-scale unsymmetric element problems’, Intl J. Numer. Methods Eng. 77, 901921.
Reid, J. K. and Scott, J. A. (2009b), ‘An out-of-core sparse Cholesky solver’, ACM Trans. Math. Softw. 36, 9:1–9:33.
Reiszig, G. (2007), ‘Local fill reduction techniques for sparse symmetric linear systems’, Electr. Eng. 89, 639652.
Rennich, S. C., Stosic, D. and Davis, T. A. (2014), Accelerating sparse Cholesky factorization on GPUs. In Proc. 4th Workshop on Irregular Applications: Architectures and Algorithms, IEEE, pp. 916.
Robey, T. H. and Sulsky, D. L. (1994), ‘Row orderings for a sparse QR decomposition’, SIAM J. Matrix Anal. Appl. 15, 12081225.
Rose, D. J. (1972), A graph-theoretic study of the numerical solution of sparse positive definite systems of linear equations. In Graph Theory and Computing (Read, R. C., ed.), Academic, pp. 183217.
Rose, D. J. and Bunch, J. R. (1972), The role of partitioning in the numerical solution of sparse systems. In Sparse Matrices and their Applications (Rose, D. J. and Willoughby, R. A., eds), Plenum, pp. 177187.
Rose, D. J. and Tarjan, R. E. (1978), ‘Algorithmic aspects of vertex elimination on directed graphs’, SIAM J. Appl. Math. 34, 176197.
D. J. Rose and R. A. Willoughby, eds (1972), Sparse Matrices and their Applications, Plenum.
Rose, D. J., Tarjan, R. E. and Lueker, G. S. (1976), ‘Algorithmic aspects of vertex elimination on graphs’, SIAM J. Comput. 5, 266283.
Rose, D. J., Whitten, G. G., Sherman, A. H. and Tarjan, R. E. (1980), ‘Algorithms and software for in-core factorization of sparse symmetric positive definite matrices’, Comput. Struct. 11, 597608.
Rothberg, E. (1995), ‘Alternatives for solving sparse triangular systems on distributed-memory computers’, Parallel Comput. 21, 11211136.
Rothberg, E. (1996), ‘Performance of panel and block approaches to sparse Cholesky factorization on the iPSC/860 and Paragon multicomputers’, SIAM J. Sci. Comput. 17, 699713.
Rothberg, E. and Eisenstat, S. C. (1998), ‘Node selection strategies for bottom-up sparse matrix orderings’, SIAM J. Matrix Anal. Appl. 19, 682695.
Rothberg, E. and Gupta, A. (1991), ‘Efficient sparse matrix factorization on high-performance workstations: Exploiting the memory hierarchy’, ACM Trans. Math. Softw. 17, 313334.
Rothberg, E. and Gupta, A. (1993), ‘An evaluation of left-looking, right-looking, and multifrontal approaches to sparse Cholesky factorization on hierarchical-memory machines’, Intl J. High Speed Computing 5, 537593.
Rothberg, E. and Gupta, A. (1994), ‘An efficient block-oriented approach to parallel sparse Cholesky factorization’, SIAM J. Sci. Comput. 15, 14131439.
Rothberg, E. and Schreiber, R. (1994), Improved load distribution in parallel sparse Cholesky factorization. In Proc. Supercomputing ’94, IEEE, pp. 783792.
Rothberg, E. and Schreiber, R. (1999), ‘Efficient methods for out-of-core sparse Cholesky factorization’, SIAM J. Sci. Comput. 21, 129144.
Rotkin, V. and Toledo, S. (2004), ‘The design and implementation of a new out-of-core sparse Cholesky factorization method’, ACM Trans. Math. Softw. 30, 1946.
Rouet, F.-H., Li, X. S., Ghysels, P. and Napov, A. (2015), A distributed-memory package for dense hierarchically semi-separable matrix computations using randomization. Technical report, Lawrence Berkeley National Laboratory, Berkeley. arXiv:1503.05464
Rozin, E. and Toledo, S. (2005), ‘Locality of reference in sparse Cholesky methods’, Electron. Trans. Numer. Anal. 21, 81106.
Sadayappan, P. and Visvanathan, V. (1988), ‘Circuit simulation on shared-memory multiprocessors’, IEEE Trans. Comput. 37, 16341642.
Sadayappan, P. and Visvanathan, V. (1989), ‘Efficient sparse matrix factorization for circuit simulation on vector supercomputers’, IEEE Trans. Computer-Aided Design Integ. Circ. Sys. 8, 12761285.
Sala, M., Stanley, K. S. and Heroux, M. A. (2008), ‘On the design of interfaces to sparse direct solvers’, ACM Trans. Math. Softw. 34, 9:1–9:22.
Saltz, J. H. (1990), ‘Aggregation methods for solving sparse triangular systems on multiprocessors’, SIAM J. Sci. Comput. 11, 123144.
Sao, P., Liu, X., Vuduc, R. and Li, X. S. (2015), A sparse direct solver for distributed memory Xeon Phi-accelerated systems. In Proc. 29th IEEE International Parallel and Distributed Processing Symposium: IPDPS.
Sao, P., Vuduc, R. and Li, X. S. (2014), A distributed CPU–GPU sparse direct solver. In Vol. 8632 of Lecture Notes in Computer Science (Silva, F., Dutra, I. and Santos Costa, V., eds), Springer, pp. 487498.
Sato, N. and Tinney, W. F. (1963), ‘Techniques for exploiting the sparsity of the network admittance matrix’, IEEE Trans. Power Apparatus and Systems 82(69), 944949.
Schenk, O. and Gärtner, K. (2002), ‘Two-level dynamic scheduling in PARDISO: Improved scalability on shared memory multiprocessing systems’, Parallel Comput. 28, 187197.
Schenk, O. and Gärtner, K. (2004), ‘Solving unsymmetric sparse systems of linear equations with PARDISO’, Future Generation Comp. Sys. 20, 475487.
Schenk, O. and Gärtner, K. (2006), ‘On fast factorization pivoting methods for sparse symmetric indefinite systems’, Electron. Trans. Numer. Anal. 23, 158179.
Schenk, O., Gärtner, K. and Fichtner, W. (2000), ‘Efficient sparse LU factorization with left-right looking strategy on shared memory multiprocessors’, BIT Numer. Math. 40, 158176.
Schenk, O., Gärtner, K., Fichtner, W. and Stricker, A. (2001), ‘PARDISO: A high-performance serial and parallel sparse linear solver in semiconductor device simulation’, Future Generation Comp. Sys. 18, 6978.
Schreiber, R. (1982), ‘A new implementation of sparse Gaussian elimination’, ACM Trans. Math. Softw. 8, 256276.
Schreiber, R. (1993), Scalability of sparse direct solvers. In Vol. 56 of IMA Volumes in Applied Mathematics (George, A., Gilbert, J. R. and Liu, J. W. H., eds), Springer, pp. 191209.
Schulze, J. (2001), ‘Towards a tighter coupling of bottom-up and top-down sparse matrix ordering methods’, BIT Numer. Math. 41, 800841.
Scott, J. A. (1999a), ‘A new row ordering strategy for frontal solvers’, Numer. Linear Algebra Appl. 6, 189211.
Scott, J. A. (1999b), ‘On ordering elements for a frontal solver’, Comm. Numer. Methods Eng. 15, 309324.
Scott, J. A. (2001a), ‘The design of a portable parallel frontal solver for chemical process engineering problems’, Comput. Chem. Eng. 25, 16991709.
Scott, J. A. (2001b), ‘A parallel frontal solver for finite element applications’, Intl J. Numer. Methods Eng. 50, 11311144.
Scott, J. A. (2003), ‘Parallel frontal solvers for large sparse linear systems’, ACM Trans. Math. Softw. 29, 395417.
Scott, J. A. (2006), ‘A frontal solver for the 21st century’, Comm. Numer. Methods Eng. 22, 10151029.
Scott, J. A. (2010), ‘Scaling and pivoting in an out-of-core sparse direct solver’, ACM Trans. Math. Softw. 37, 19:1–19:23.
Scott, J. A. and Hu, Y. (2007), ‘Experiences of sparse direct symmetric solvers’, ACM Trans. Math. Softw. 33, 18:1–18:28.
Shen, K., Yang, T. and Jiao, X. (2000), ‘S+: Efficient 2D sparse LU factorization on parallel machines’, SIAM J. Matrix Anal. Appl. 22, 282305.
Sherman, A. H. (1978a), ‘Algorithm 533: NSPIV, a Fortran subroutine for sparse Gaussian elimination with partial pivoting’, ACM Trans. Math. Softw. 4, 391398.
Sherman, A. H. (1978b), ‘Algorithms for sparse Gaussian elimination with partial pivoting’, ACM Trans. Math. Softw. 4, 330338.
Silvester, P. P., Auda, H. A. and Stone, G. D. (1984), ‘A memory-economic frontwidth reduction algorithm’, Intl J. Numer. Methods Eng. 20, 733743.
Sloan, S. W. (1986), ‘An algorithm for profile and wavefront reduction of sparse matrices’, Intl J. Numer. Methods Eng. 23, 239251.
Slota, G., Rajamanickam, S. and Madduri, K. (2014), BFS and coloring-based parallel algorithms for strongly connected components and related problems. In Proc. 2014 28th IEEE International Parallel and Distributed Processing Symposium, pp. 550559.
Slota, G., Rajamanickam, S. and Madduri, K. (2015), High-performance graph analytics on manycore processors. In Proc. 2015 IEEE International Parallel and Distributed Processing Symposium: IPDPS, pp. 1727.
Smart, D. and White, J. (1988), Reducing the parallel solution time of sparse circuit matrices using reordered Gaussian elimination and relaxation. In Proc. IEEE International Symposium Circuits and Systems.
Snay, R. A. (1969), Reducing the profile of sparse symmetric matrices. Technical report NOS NGS-4, National Oceanic and Atmospheric Administration, Washington, DC.
Speelpenning, B. (1978), The generalized element method. Technical report UIUC-DCS-R-78-946, Department of Computer Science, University of Illinois, Urbana, IL.
Srinivas, M. (1983), ‘Optimal parallel scheduling of Gaussian elimination DAG’s’, IEEE Trans. Comput. C‐32, 11091117.
Suhl, L. M. and Suhl, U. H. (1993), ‘A fast LU update for linear programming’, Ann. Oper. Res. 43, 3347.
Suhl, U. H. and Suhl, L. M. (1990), ‘Computing sparse LU factorizations for large-scale linear programming bases’, ORSA J. Comput. 2, 325335.
Sun, C. (1996), ‘Parallel sparse orthogonal factorization on distributed-memory multiprocessors’, SIAM J. Sci. Comput. 17, 666685.
Sun, C. (1997), ‘Parallel solution of sparse linear least squares problems on distributed-memory multiprocessors’, Parallel Comput. 23, 20752093.
Tarjan, R. E. (1972), ‘Depth first search and linear graph algorithms’, SIAM J. Comput. 1, 146160.
Tarjan, R. E. (1975), ‘Efficiency of a good but not linear set union algorithm’, J. Assoc. Comput. Mach. 22, 215225.
Tarjan, R. E. (1976), Graph theory and Gaussian elimination. In Sparse Matrix Computations (Bunch, J. R. and Rose, D. J., eds), Academic, pp. 322.
Tewarson, R. P. (1966), ‘On the product form of inverses of sparse matrices’, SIAM Review 8, 336342.
Tewarson, R. P. (1967a), ‘The product form of inverses of sparse matrices and graph theory’, SIAM Review 9, 9199.
Tewarson, R. P. (1967b), ‘Row–column permutation of sparse matrices’, Comput. J. 10, 300305.
Tewarson, R. P. (1967c), ‘Solution of a system of simultaneous linear equations with a sparse coefficient matrix by elimination methods’, BIT Numer. Math. 7, 226239.
Tewarson, R. P. (1968), ‘On the orthonormalization of sparse vectors’, Computing 3, 268279.
Tewarson, R. P. (1970), ‘Computations with sparse matrices’, SIAM Review 12, 527544.
Tewarson, R. P. (1972), ‘On the Gaussian elimination method for inverting sparse matrices’, Computing 9, 17.
R. P. Tewarson, ed. (1973), Sparse Matrices, Vol. 99 of Mathematics in Science and Engineering, Academic.
Thompson, E. and Shimazaki, Y. (1980), ‘A frontal procedure using skyline storage’, Intl J. Numer. Methods Eng. 15, 889910.
Tinney, W. F. and Walker, J. W. (1967), ‘Direct solutions of sparse network equations by optimally ordered triangular factorization’, Proc. IEEE 55, 18011809.
Tomlin, J. A. (1972), Modifying triangular factors of the basis in the simplex method. In Sparse Matrices and their Applications (Rose, D. J. and Willoughby, R. A., eds), Plenum, pp. 7785.
Totoni, E., Heath, M. T. and Kale, L. V. (2014), ‘Structure-adaptive parallel solution of sparse triangular linear systems’, Parallel Comput. 40, 454470.
Van der Stappen, A. F., Bisseling, R. H. and van de Vorst, J. G. G. (1993), ‘Parallel sparse LU decomposition on a mesh network of transputers’, SIAM J. Matrix Anal. Appl. 14, 853879.
Vastenhouw, B. and Bisseling, R. H. (2005), ‘A two-dimensional data distribution method for parallel sparse matrix–vector multiplication’, SIAM review 47, 6795.
Wang, S., Li, X. S., Rouet, F.-H., Xia, J. and De Hoop, M. V. (2016), ‘A parallel geometric multifrontal solver using hierarchically semiseparable structure’, ACM Trans. Math. Softw., to appear.
Webb, J. P. and Froncioni, A. (1986), ‘A time-memory trade-off frontwidth reduction algorithm for finite element analysis’, Intl J. Numer. Methods Eng. 23, 19051914.
J. H. Wilkinson and C. Reinsch, eds (1971), Handbook for Automatic Computation, Volume II: Linear Algebra, Springer.
Wing, O. and Huang, J. W. (1980), ‘A computation model of parallel solution of linear equations’, IEEE Trans. Comput. C‐29, 632638.
Xia, J. (2013a), ‘Efficient structured multifrontal factorization for general large sparse matrices’, SIAM J. Sci. Comput. 35, A832A860.
Xia, J. (2013b), ‘Randomized sparse direct solvers’, SIAM J. Matrix Anal. Appl. 34, 197227.
Xia, J., Chandrasekaran, S., Gu, M. and Li, X. S. (2009), ‘Superfast multifrontal method for structured linear systems of equations’, SIAM J. Matrix Anal. Appl. 31, 13821411.
Xia, J., Chandrasekaran, S., Gu, M. and Li, X. S. (2010), ‘Fast algorithms for hierarchically semiseparable matrices’, Numer. Linear Algebra Appl. 17, 953976.
Yannakakis, M. (1981), ‘Computing the minimum fill-in is NP-complete’, SIAM J. Alg. Discrete Methods 2, 7779.
Yeralan, S. N., Davis, T. A. and Ranka, S. (2015), Sparse QR factorization on the GPU. Technical report, Texas A&M University. http://faculty.cse.tamu.edu/publications.html
Yu, C. D., Wang, W. and Pierce, D. (2011), ‘A CPU–GPU hybrid approach for the unsymmetric multifrontal method’, Parallel Comput. 37, 759770.
Zhang, G. and Elman, H. C. (1992), ‘Parallel sparse Cholesky factorization on a shared memory multiprocessor’, Parallel Comput. 18, 10091022.
Zlatev, Z. (1980), ‘On some pivotal strategies in Gaussian elimination by sparse technique’, SIAM J. Numer. Anal. 17, 1830.
Zlatev, Z. (1982), ‘Comparison of two pivotal strategies in sparse plane rotations’, Comput. Math. Appl. 8, 119135.
Zlatev, Z. (1985), Sparse matrix techniques for general matrices with real elements: Pivotal strategies, decompositions and applications in ODE software. In Sparsity and its Applications (Evans, D. J., ed.), Cambridge University Press, pp. 185228.
Zlatev, Z. (1987), ‘A survey of the advances in the exploitation of the sparsity in the solution of large problems’, J. Comput. Appl. Math. 20, 83105.
Zlatev, Z. (1991), Computational Methods for General Sparse Matrices, Kluwer Academic.
Zlatev, Z. and Thomsen, P. G. (1981), Sparse matrices: Efficient decompositions and applications. In Sparse Matrices and their Uses (Duff, I. S., ed.), Academic, pp. 367375.
Zlatev, Z., Wasniewski, J. and Schaumburg, K. (1981), Y12M: Solution of Large and Sparse Systems of Linear Algebraic Equations, Vol. 121 of Lecture Notes in Computer Science, Springer.
Zmijewski, E. and Gilbert, J. R. (1988), ‘A parallel algorithm for sparse symbolic Cholesky factorization on a multiprocessor’, Parallel Comput. 7, 199210.