Skip to main content
×
Home
    • Aa
    • Aa

Topological pattern recognition for point cloud data*

  • Gunnar Carlsson (a1)
Abstract

In this paper we discuss the adaptation of the methods of homology from algebraic topology to the problem of pattern recognition in point cloud data sets. The method is referred to as persistent homology, and has numerous applications to scientific problems. We discuss the definition and computation of homology in the standard setting of simplicial complexes and topological spaces, then show how one can obtain useful signatures, called barcodes, from finite metric spaces, thought of as sampled from a continuous object. We present several different cases where persistent homology is used, to illustrate the different ways in which the method can be applied.

Copyright
Footnotes
Hide All
*

Colour online for monochrome figures available at journals.cambridge.org//anu.

Footnotes
References
Hide All
Abergel A. et al. (2011), ‘Planck early results XXIV: Dust in the diffuse interstellar medium and the galactic halo’, Astron. Astrophys. 536, A24.
Adler R. (1981), The Geometry of Random Fields, Wiley Series in Probability and Mathematical Statistics.
Adler R. and Taylor J. (2007), Random Fields and Geometry, Springer Monographs in Mathematics.
Adler R., Bobrowski O., Borman M., Subag E. and Weinberger S. (2010), Persistent homology for random fields and complexes. In Borrowing Strength: Theory Powering Applications: A Festschrift for Lawrence D. Brown, Vol. 6, pp. 124143.
Bak A. and Lerner M. (2014), in preparation.
Bardeen J., Bond J., Kaiser N. and Szalay A. (1986), ‘The statistics of peaks of Gaussian random fields’, Astrophys. J. 304, 1561.
Bennett C., Hill R., Hinshaw G., Nolta M., Odegard N., Page L., Spergel D., Weiland J., Wright E., Halpern M., Jarosik N., Kogut A., Limon M., Meyer S., Tucker G. and Wollack E. (2003), ‘First-year Wilkinson Microwave Anisotropy Probe (WMAP)* observations: Foreground emission’, Astrophys. J. Supplement Series 148, 97.
Blumberg A., Gal I., Mandell M. and Pancia M. (2013), Robust statistics, hypothesis testing, and confidence intervals for persistent homology on metric measure spaces. arXiv:1206.4581
Bonnet O. (1848), ‘Mémoire sur la théorie generale des surfaces’, Journal de l'Ecole Polytechnique 19, 1146.
Buneman P. (1974), ‘A note on the metric properties of trees’, J. Combin. Theory B 17, 4850.
Burago D., Burago Y. and Ivanov S. (2001), A Course in Metric Geometry, Vol. 33 of Graduate Studies in Mathematics, AMS.
Carlsson G. (2009), ‘Topology and data’, Bull. Amer. Math. Soc. 46, 255308.
Carlsson G. and de Silva V. (2010), ‘Zigzag persistence’, Found. Comput. Math. 10, 367405.
Carlsson G. and Zomorodian A. (2009), ‘The theory of multidimensional persistence’, Discrete Comput. Geom. 42, 7193.
Carlsson G., Ishkhanov T., de Silva V. and Zomorodian A. (2008), ‘On the local behavior of spaces of natural images’, Internat. J. Computer Vision 76, 112.
Carlsson G., de Silva V. and Morozov D. (2009), Zigzag persistent homology and real-valued functions. In Proc. 25th Annual Symposium on Computational Geometry, ACM, pp. 247256.
Carlsson G., Zomorodian A., Collins A. and Guibas L. (2005), ‘Persistence barcodes for shapes’, Internat. J. Shape Modeling 11, 149.
Chan J., Carlsson G. and Rabadan R. (2013), ‘Topology of viral evolution’, Proc. Nat. Acad. Sci. 110, 1856618571.
Chazal F., Cohen-Steiner D., Guibas L., Memoli F. and Oudot S. (2009), ‘Gromov-Hausdorff stable signatures for shapes using persistence. In Eurographics Symposium on Geometry Processing 2009. Computer Graphics Forum 28, 13931403.
Chazal F., Cohen-Steiner D. and Merigot Q. (2011), ‘Geometric inference for probability measures’, Found. Comput. Math. 11, 733751.
Cohen-Steiner D., Edelsbrunner H. and Harer J. (2007), ‘Stability of persistence diagrams’, Discrete Comput. Geom. 37, 103120.
Cohen-Steiner D., Edelsbrunner H., Harer J. and Mileyko Y. (2010), ‘Lipschitz functions have Lp-stable persistence’, Found. Comput. Math. 10, 127139.
Dalbec J. (1999), ‘Multisymmetric functions’, Beiträge Algebra Geom. 40, 2751
Derksen H. and Weyman J. (2005), ‘Quiver representations’, Notices Amer. Math. Soc. 52, 200206.
Donoho D. (1999), ‘Wedgelets: Nearly minimax estimation of edges’, Ann. Statist. 27, 859897.
Doolittle W. (1999), ‘Phylogenetic classification and the universal tree’, Science 284 (5423), 21242128.
Drummond A., Nicholls F., Rodrigo A. and Solomon W. (2002), ‘Estimating mutation parameters, population history, and genealogy simultaneously from temporally spaced sequence data’, Genetics 161, 13071320.
Edelsbrunner H., Letscher D. and Zomorodian A. (2002), ‘Topological persistence and simplification’, Discrete Comput. Geom. 28, 511533
Eilenberg S. (1944), ‘Singular homology theory’, Ann. of Math. 45, 407447.
Euler L. (1741), ‘Solutio problematis ad geometriam situs pertinentis’, Commen-tarii Academiae Scientiarum Petropolitanae 8, 128140.
Euler L. (1758 a), ‘Elementa doctrinae solidorum’, Novi Commentarii Academiae Scientiarum Petropolitanae 4, 109140. Opera Omnia (1) 26, 72–93.
Euler L. (1758 b), ‘Demonstratio nonnullarum insignium proprietatum quibus solida hedris planis inclusa sunt praedita’, Novi Commentarii Academiae Scien-tiarum Petropolitanae 4, 140160. Opera Omnia (1) 26, 94–108.
Felsenstein J. (2004), Inferring Phylogenies, Sinauer Associates, Sunderland, MA.
Fréchet M. (1944), ‘L'intégrale abstraite d'une fonction abstraite d'une variable abstraite et son application à la moyenne d'un élément aléatoire de nature quelconqueRev. Sci. 82, 483512.
Frechet M. (1948), ‘Les elements aratoires de nature quelconque dans un espace distanciéAnn. Inst. Henri Poincaré 10, 215310.
Gabriel P. (1972), ‘Unzerlegbare Darstellungen I’, Manuscr. Math. 6, 71103.
Greven A., Pfafelhuber P. and Winter A. (2009), ‘Convergence in distribution of random metric measure spaces’, Probab. Theory Rel. Fields 145, 285322.
Gott J., Dickinson M. and Melott A. (1986), ‘The sponge-like topology of large-scale structure in the universe’, Astrophys. J. 306, 341357.
Hamilton A., Gott J. and Weinberg D. (1986), ‘The topology of the large-scale structure of the universe’, Astrophys. J. 309, 112.
Hartigan J. (1975), Clustering Algorithms, Wiley Series in Probability and Mathematical Statistics.
Hatcher A. (2002), Algebraic Topology, Cambridge University Press.
van Hateren J. and van der Schaaf A. (1998), ‘Independent component filters of natural images compared with simple cells in primary visual cortex’, Proc. R. Soc. Lond. B 265, 359366.
Huchra J., Jarrett T., Skrutskie M., Cutri R., Schneider S. and Macri L. (2005), The 2MASS redshift survey and low galactic latitude large-scale structure. In Nearby Large-Scale Structures and the Zone of Avoidance (Fairall K.P. and Woudt P. A., eds), ASP Conference Series, Vol. 329.
Irwin J. and Schoichet B. (2005), ‘ZINC: A free database of commercially available compounds for virtual screening’, J. Chem. Inf. Model. 45, 177182.
Karcher H. (1977), ‘Riemannian center of mass and mollifier smoothing’, Comm. Pure Appl. Math. 30, 509541.
Kendall W. (1990), ‘Probability, convexity, and harmonic maps with small image I: Uniqueness and fine existence’, Proc. London Math. Soc. 61, 371406.
Kogan J. (2007), Introduction to Clustering Large and High-Dimensional Data, Cambridge University Press.
Lee A., Pedersen K. and Mumford D. (2003), ‘The non-linear statistics of high contrast patches in natural images’, Internat. J. Computer Vision 54, 83103.
Lipsky D., Skraba P. and Vejdemo-Johansson M. (2011), A spectral sequence for parallelized persistence. arXiv:1112.1245
Listing J. (1848), Vorstudien zur Topologie, Vandenhoeck und Ruprecht.
Lum P., Singh G., Carlsson J., Lehman A., Ishkhanov T., Vejdemo-Johansson M., Alagappan M. and Carlsson G. (2013), ‘Extracting insights from the shape of complex data using topology. Nature Scientific Reports 3, # 1236.
Mac Lane S. (1998), Categories for the Working Mathematician, second edition, Vol. 5 of Graduate Texts in Mathematics, Springer.
Maleki A., Shahram M. and Carlsson G. (2008), Near optimal coder for image geometries. In Proc. 15th IEEE International Conference on Image Processing (ICIP), pp. 10611064.
Mileyko Y., Mukherjee S. and Harer J. (2011), ‘Probability measures on the space of persistence diagrams’, Inverse Problems 27, 122.
Milnor J. (1963), Morse Theory, Princeton University Press.
Munkres J. (1975), Topology: A First Course, Prentice Hall.
Nicolau M., Levine A. and Carlsson G. (2011), ‘Topology based data analysis identiies a subgroup of breast cancers with a unique mutational proile and excellent survival. Proc. Nat. Acad. Sci. 108, 72657270.
Niyogi P., Smale S. and Weinberger S. (2008), ‘Finding the homology of submanifolds with high conidence from random samples’, Discrete Comput. Geom. 39, 419441.
Park C., Pranav P., Chingangram P., van de Weygaert R., Jones B., Vegter G., Kim I., Hidding J. and Helwing W. (2013), ‘Betti numbers of Gaussian fields’, J. Korean Astron. Soc. 46, 125131.
Perea J. and Carlsson G. (2014), ‘A Klein bottle-based dictionary for texture representation’, Internat. J. Computer Vision 107, 7597.
Perea J. and Harer J. (2014), Sliding windows and persistence: An application of topological methods to signal analysis. arXiv:1307.6188v1
Poincare H. (1895), ‘Analysis situs’, Journal de l'École Polytechnique (2) 1, 1123.
Riemann B. (1851), Grundlagen für eine allgemeine Theorie der Functionen einer veränderlichen complexen Grösse. Dissertation, Göttingen.
Robins V. (1999), ‘Towards computing homology from finite approximations’, Topology Proceedings 24 (1), 503532.
Segal G. (1968), ‘Classifying spaces and spectral sequences’, Inst. Hautes Études Sci. Publ. Math. 34, 105112.
de Silva V. and Carlsson G. (2004), Topological estimation using witness complexes. In Proc. First Eurographics Conference on Point-Based Graphics, pp. 157166.
Singh G., Mémoli F. and Carlsson G. (2007), Topological methods for the analysis of high dimensional data sets and 3D object recognition. In Proc. Eurographics Symposium on Point-Based Graphics 2007 (Botsch M. and Pajarola R., eds).
Sousbie T. (2011), ‘The persistent cosmic web and its filamentary structure I: Theory and implementation’, Mon. Not. R. Astron. Soc. 414, 350383.
Sousbie T., Pichon C. and Kawahara H. (2011), ‘The persistent cosmic web and its filamentary structure II: Illustrations’, Mon. Not. R. Astron. Soc. 414, 384403.
Spergel D., Bean R., Dore O., Nolta M., Bennett C., Dunkley J., Hinshaw G., Jarosik N., Komatsu E., Page L., Peiris H., Verde L., Halpern M., Hill R., Kogut A., Limon M., Meyer S. S., Odegards N., Tucker G., Weiland J., Wollack E. and Wright E. (2007) ‘Three-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: Implications for cosmology’, As-trophys. J. Supplement Series 170, 377408.
Turner K., Mileyko Y., Mukherjee S. and Harer J. (2014), Frechet means for distributions of persistence diagrams. arXiv:1206.2790v2
Vandermonde A. (1774), Remarques sur les problèmes de situation. In Mémoires de l'Académie Royale des Sciences pour 1771, Paris, pp. 556574.
van de Weygaert R., Vegter G., Edelsbrunner H., Jones B., Pranav P., Park C., Hellwing W., Eldering B., Kruithof N., Bos E., Hidding J., Feldbrugge J., ten Have E., van Engelen M., Caroli M. and Teillaud M. (2011), Alpha, Betti, and the Megaparsec Universe: On the topology of the cosmic web. In Transactions on Computational Science XIV (Gavrilova M.L. et al., eds), Vol. 6970 of Lecture Notes in Computer Science, Springer, pp. 60101.
Zomorodian A. (2005), Topology for Computing, Vol. 16 of Cambridge Monographs on Applied and Computational Mathematics, Cambridge University Press.
Zomorodian A. (2010), The tidy set: A minimal simplicial set for computing homology of clique complexes. In Proc. 2010 Annual Symposium on Computational Geometry, ACM, pp. 257266.
Zomorodian A. and Carlsson G. (2005), ‘Computing persistent homology’, Discrete Comput. Geom. 33, 247274.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Acta Numerica
  • ISSN: 0962-4929
  • EISSN: 1474-0508
  • URL: /core/journals/acta-numerica
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Full text views

Total number of HTML views: 3
Total number of PDF views: 229 *
Loading metrics...

Abstract views

Total abstract views: 1139 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 21st October 2017. This data will be updated every 24 hours.