Skip to main content
    • Aa
    • Aa
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 42
  • Cited by
    This article has been cited by the following publications. This list is generated based on data provided by CrossRef.

    Cao, Meng and Roberts, A. J. 2016. Multiscale modelling couples patches of non-linear wave-like simulations. IMA Journal of Applied Mathematics, Vol. 81, Issue. 2, p. 228.

    Hernandez-Duenas, Gerardo and Beljadid, Abdelaziz 2016. A central-upwind scheme with artificial viscosity for shallow-water flows in channels. Advances in Water Resources,

    Iverson, R. M. and George, D. L. 2016. Modelling landslide liquefaction, mobility bifurcation and the dynamics of the 2014 Oso disaster. Géotechnique, Vol. 66, Issue. 3, p. 175.

    Jaimes, Miguel A. Reinoso, Eduardo Ordaz, Mario Huerta, Benjamín Silva, Rodolfo Mendoza, Edgar and Rodríguez, Juan C. 2016. A new approach to probabilistic earthquake-induced tsunami risk assessment. Ocean & Coastal Management, Vol. 119, p. 68.

    Mandli, Kyle T. Ahmadia, Aron J. Berger, Marsha Calhoun, Donna George, David L. Hadjimichael, Yiannis Ketcheson, David I. Lemoine, Grady I. and LeVeque, Randall J. 2016. Clawpack: building an open source ecosystem for solving hyperbolic PDEs. PeerJ Computer Science, Vol. 2, p. e68.

    Melgar, Diego Allen, Richard M. Riquelme, Sebastian Geng, Jianghui Bravo, Francisco Baez, Juan Carlos Parra, Hector Barrientos, Sergio Fang, Peng Bock, Yehuda Bevis, Michael Caccamise, Dana J. Vigny, Christophe Moreno, Marcos and Smalley, Robert 2016. Local tsunami warnings: Perspectives from recent large events. Geophysical Research Letters, Vol. 43, Issue. 3, p. 1109.

    Adams, Loyce M. LeVeque, Randall J. and González, Frank I. 2015. The Pattern Method for incorporating tidal uncertainty into probabilistic tsunami hazard assessment (PTHA). Natural Hazards, Vol. 76, Issue. 1, p. 19.

    Arcos, M. E. M. and LeVeque, Randall J. 2015. Validating Velocities in the GeoClaw Tsunami Model Using Observations near Hawaii from the 2011 Tohoku Tsunami. Pure and Applied Geophysics, Vol. 172, Issue. 3-4, p. 849.

    Behrens, J. and Dias, F. 2015. New computational methods in tsunami science. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 373, Issue. 2053, p. 20140382.

    Drähne, Ulrike Goseberg, Nils Vater, Stefan Beisiegel, Nicole and Behrens, Jörn 2015. An Experimental and Numerical Study of Long Wave Run-Up on a Plane Beach. Journal of Marine Science and Engineering, Vol. 4, Issue. 1, p. 1.

    Ezzedine, Souheil M. Lomov, Ilya Miller, Paul L. Dennison, Deborah S. Dearborn, David S. and Antoun, Tarabay H. 2015. Simulation of Asteroid Impact on Ocean Surfaces, Subsequent Wave Generation and the Effect on US Shorelines. Procedia Engineering, Vol. 103, p. 113.

    Gandham, Rajesh Medina, David and Warburton, Timothy 2015. GPU Accelerated Discontinuous Galerkin Methods for Shallow Water Equations. Communications in Computational Physics, Vol. 18, Issue. 01, p. 37.

    Gosse, Laurent 2015. A well-balanced and asymptotic-preserving scheme for the one-dimensional linear Dirac equation. BIT Numerical Mathematics, Vol. 55, Issue. 2, p. 433.

    Hilbe, Michael and Anselmetti, Flavio S. 2015. Mass Movement-Induced Tsunami Hazard on Perialpine Lake Lucerne (Switzerland): Scenarios and Numerical Experiments. Pure and Applied Geophysics, Vol. 172, Issue. 2, p. 545.

    Iverson, Richard M. and Ouyang, Chaojun 2015. Entrainment of bed material by Earth-surface mass flows: Review and reformulation of depth-integrated theory. Reviews of Geophysics, Vol. 53, Issue. 1, p. 27.

    Melgar, D. and Bock, Y. 2015. Kinematic earthquake source inversion and tsunami runup prediction with regional geophysical data. Journal of Geophysical Research: Solid Earth, Vol. 120, Issue. 5, p. 3324.

    Neumann, Philipp and Bungartz, Hans-Joachim 2015. Dynamically adaptive Lattice Boltzmann simulation of shallow water flows with the Peano framework. Applied Mathematics and Computation, Vol. 267, p. 795.

    Popinet, Stéphane 2015. A quadtree-adaptive multigrid solver for the Serre–Green–Naghdi equations. Journal of Computational Physics, Vol. 302, p. 336.

    Ren, Zhi-Yuan Zhao, Xi and Liu, Hua 2015. Dispersion Effects on Tsunami Propagation in South China Sea. Journal of Earthquake and Tsunami, Vol. 09, Issue. 05, p. 1540001.

    Roberts, A. J. 2015. Macroscale, slowly varying, models emerge from the microscale dynamics: Fig. 1.. IMA Journal of Applied Mathematics, Vol. 80, Issue. 5, p. 1492.


Tsunami modelling with adaptively refined finite volume methods*

  • Randall J. LeVeque (a1), David L. George (a2) and Marsha J. Berger (a3)
  • DOI:
  • Published online: 28 April 2011

Numerical modelling of transoceanic tsunami propagation, together with the detailed modelling of inundation of small-scale coastal regions, poses a number of algorithmic challenges. The depth-averaged shallow water equations can be used to reduce this to a time-dependent problem in two space dimensions, but even so it is crucial to use adaptive mesh refinement in order to efficiently handle the vast differences in spatial scales. This must be done in a ‘wellbalanced’ manner that accurately captures very small perturbations to the steady state of the ocean at rest. Inundation can be modelled by allowing cells to dynamically change from dry to wet, but this must also be done carefully near refinement boundaries. We discuss these issues in the context of Riemann-solver-based finite volume methods for tsunami modelling. Several examples are presented using the GeoClaw software, and sample codes are available to accompany the paper. The techniques discussed also apply to a variety of other geophysical flows.

Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

D. S. Bale , R. J. LeVeque , S. Mitran and J. A. Rossmanith (2002), ‘A wave propagation method for conservation laws and balance laws with spatially varying flux functions’, SIAM J. Sci. Comput. 24, 955978.

J. P. Bardet , C. E. Synolakis , H. L. Davies , F. Imamura and E. A. Okal (2003), ‘Landslide tsunamis: Recent findings and research directions’, Pure Appl. Geophys. 160, 17931809.

M. Berger and J. Oliger (1984), ‘Adaptive mesh refinement for hyperbolic partial differential equations’, J.Comput. Phys. 53, 484512.

M. J. Berger and P. Colella (1989), ‘Local adaptive mesh refinement for shock hydrodynamics’, J. Comput. Phys. 82, 6484.

M. J. Berger and R. J. LeVeque (1998), ‘Adaptive mesh refinement using wave-propagation algorithms for hyperbolic systems’, SIAM J. Numer. Anal. 35, 22982316.

M. J. Berger and I. Rigoutsos (1991), ‘An algorithm for point clustering and grid generation’, IEEE Trans. Sys. Man & Cyber. 21, 12781286.

M. J. Berger , D. A. Calhoun , C. Helzel and R. J. LeVeque (2009), ‘Logically rectangular finite volume methods with adaptive refinement on the sphere’, Phil. Trans. R. Soc. A 367, 44834496.

J. L. Bona , M. Chen and J.-C. Saut (2002), ‘Boussinesq equations and other systems for small-amplitude long waves in nonlinear dispersive media I: Derivation and linear theory’, J. Nonlinear Sci. 12, 283318.

N. Botta , R. Klein , S. Langenberg and S. Lützenkirchen (2004), ‘Well balanced finite volume methods for nearly hydrostatic flows’, J. Comput. Phys. 196, 539565.

F Bouchut (2004), Nonlinear Stability of Finite Volume Methods for Hyperbolic Conservation Laws and Well-Balanced Schemes for Sources, Birkhäuser.

D. Burwell , E. Tolkova and A. Chawla (2007), ‘Diffusion and dispersion characterization of a numerical tsunami model’, Ocean Modelling 19, 1030.

M. J. Castro , P. G. LeFloch , M. L. Munoz and C. Par és (2008), ‘Why many theories of shock waves are necessary: Convergence error in formally path-consistent schemes’, J. Comput. Phys. 227, 81078129.

A. Costa and G. Macedonio (2005), ‘Numerical simulation of lava flows based on depth-averaged equations’, Geophys. Res. Lett. 32, L05304.

A. Dawson , D. Long and D. Smith (1988), ‘The Storegga Slides: Evidence from eastern Scotland for a possible tsunami’, Marine Geology, January 1988.

R. P. Denlinger and R. M. Iverson (2004 a), ‘Granular avalanches across irregular three-dimensional terrain 1: Theory and computation’, J. Geophys. Res. 109, F01014.

B. Einfeldt (1988), ‘On Godunov-type methods for gas dynamics’, SIAM J. Numer. Anal. 25, 294318.

B. Einfeldt , C. D. Munz , P. L. Roe and B. Sjogreen (1991), ‘On Godunov type methods near low densities’, J. Comput. Phys. 92, 273295.

S. Fomel and J. F. Claerbout (2009), ‘Guest editors’ introduction: Reproducible research’, Comput. Sci. Engrg 11, 57.

J. M. Gallardo , C. Parés and M. Castro (2007), ‘On a well-balanced high-order finite volume scheme for shallow water equations with topography and dry areas’, J. Comput. Phys. 227, 574601.

E. L. Geist and T. Parsons (2006), ‘Probabilistic analysis of tsunami hazards’, Nat. Haz. 37, 277314.

G. Gelfenbaum and B. Jaffe (2003), ‘Erosion and sedimentation from the 17 July, 1998 Papua New Guinea tsunami’, Pure Appl. Geophys. 160, 19691999.

D. L. George (2008), ‘Augmented Riemann solvers for the shallow water equations over variable topography with steady states and inundation’, J. Comput. Phys. 227, 30893113.

F. I. González and Y. A. Kulikov (1993), Tsunami dispersion observed in the deep ocean. In Tsunamis in the World (S. Tinti , ed.), Vol. 1 of Advances in Natural and Technological Hazards Research, Kluwer, pp. 716.

F. I. González , E. L. Geist , B. Jaffe , U. Kanoglu et al. (2009), ‘Probabilistic tsunami hazard assessment at Seaside, Oregon, for near- and far-field seismic sources’, J. Geophys. Res. 114, C11023.

L. Gosse (2000), ‘A well-balanced flux-vector splitting scheme designed for hyperbolic systems of conservation laws with source terms’, Comput. Math. Appl. 39, 135159.

L. Gosse (2001), ‘A well-balanced scheme using non-conservative products designed for hyperbolic systems of conservation laws with source terms’, Math. Mod. Meth. Appl. Sci. 11, 339365.

J. M. Greenberg and A. Y. LeRoux (1996), ‘A well-balanced scheme for numerical processing of source terms in hyperbolic equations’, SIAM J. Numer. Anal. 33, 116.

S. T. Grilli , M. Ioualalen , J. Asavanant , F. Shi , J. T. Kirby and P. Watts (2007), ‘Source constraints and model simulation of the December 26, 2004, Indian Ocean Tsunami’, J. Waterway, Port, Coastal, and Ocean Engineering 133, 414.

H. Haflidason , H. Sejrup , A. Nygård , J. Mienert and P. Bryn (2004), ‘The Storegga Slide: Architecture, geometry and slide development’, Marine Geology, January 2004.

A. Harten , P. D. Lax and B. van Leer (1983), ‘On upstream differencing and Godunov-type schemes for hyperbolic conservation laws’, SIAM Review 25, 3561.

K. Hirata , E. Geist , K. Satake , Y. Tanioka and S. Yamaki (2003), ‘Slip distribution of the 1952 Tokachi-Oki earthquake (M 8.1) along the Kuril Trench deduced from tsunami waveform inversion’, J.Geophys. Res.

K. Huntington , J. Bourgeois , G. Gelfenbaum , P. Lynett , B. Jaffe , H. Yeh and R. Weiss (2007), ‘Sandy signs of a tsunami's onshore depth and speed’, EOS 88, 577578.

A. In (1999), ‘Numerical evaluation of an energy relaxation method for inviscid real fluids’, SIAM J. Sci. Comput. 21, 340365.

K. Jankaew , B. F. Atwater , Y. Sawai , M. Choowong , T. Charoentitirat , M. E Martin and A. Prendergast (2008), ‘Medieval forewarning of the 2004 Indian Ocean tsunami in Thailand’, Nature 455, 12281231.

H. M. Kelsey , A. R. Nelson , E. Hemphill-Haley and R. C. Witter (2005), ‘Tsunami history of an Oregon coastal lake reveals a 4600 yr record of great earthquakes on the Cascadia subduction zone’, GSA Bulletin 117, 10091032.

J. O. Langseth and R. J. LeVeque (2000), ‘A wave-propagation method for three-dimensional hyperbolic conservation laws’, J.Comput. Phys. 165, 126166.

R. J. LeVeque (1996), ‘High-resolution conservative algorithms for advection in incompressible flow’, SIAM J. Numer. Anal. 33, 627665.

R. J. LeVeque (2009), ‘Python tools for reproducible research on hyperbolic problems’, Comput. Sci. Engrg 11, 1927.

R. J. LeVeque and M. Pelanti (2001), ‘A class of approximate Riemann solvers and their relation to relaxation schemes’, J.Comput. Phys. 172, 572591.

P. L. Liu , H. Yeh and C. Synolakis , eds (2008), Advanced Numerical Models for Simulating Tsunami Waves and Runup, Vol. 10 of Advances in Coastal and Ocean Engineering, World Scientific.

P. Liu , P. Lynett , H. Fernando , B. Jaffe and H. Fritz (2005), ‘Observations by the International Tsunami Survey Team in Sri Lanka’, Science 308, 1595.

P. Lynett and P. L. Liu (2002), ‘A numerical study of submarine-landslide-generated waves and run-up’, Proc. Royal Soc. London Ser. A 458, 28852910.

M. E. Martin , R. Weiss , J. Bourgeois , T. K. Pinegina , H. Houston and V. V. Titov (2008), ‘Combining constraints from tsunami modeling and sedimentology to untangle the 1969 Ozernoi and 1971 Kamchatskii tsunamis’, Geophys. Res. Lett. 35, L01610.

D. G. Masson , C. B. Harbitz , R. B. Wynn , G. Pedersen and F. Løvholt (2006), ‘Submarine landslides: processes, triggers and hazard prediction’, Philos. Trans. Royal Soc. A: Math. Phys. Engrg Sci. 364, 2009.

Z. Merali 2010), ‘Why scientific computing does not compute’, Nature 467, 775777.

S. Noelle , N. Pankrantz , G. Puppo and J. R. Natvig (2006), ‘Well-balanced finite volume schemes of arbitrary order of accuracy for shallow water flows’, J.Comput. Phys. 213, 474499.

V. V. Ostapenko (1999), ‘Numerical simulation of wave flows caused by a shoreside landslide’, J. Applied Mech. Tech. Phys. 40, 647654.

M. Pelanti , F. Bouchut and A. Mangeney (2008), ‘A Roe-type scheme for two-phase shallow granular flows over variable topography’, M2AN 42, 851885.

M. Pelanti , F. Bouchut and A. Mangeney (2011), ‘A Riemann solver for singlephase and two-phase shallow flow models based on relaxation: Relations with Roe and VFRoe solvers’, J. Comput. Phys. 230, 515550.

J. J. Quirk (2003), Computational science: ‘Same old silence, same old mistakes’ ‘Something more is needed…’. In Adaptive Mesh Refinement: Theory and Applications (T. Plewa , T. Linde and V. G. Weirs , eds), Vol. 41 of Lecture Notes in Computational Science and Engineering, Springer, pp. 328.

T. Saito , T. Matsuzawa , K. Obara and T. Baba (2010), ‘Dispersive tsunami of the 2010 Chile earthquake recorded by the high-sampling-rate ocean-bottom pressure gauges’, Geophys. Res. Lett. 37, L22303.

K. Satake , K. Shimazaki , Y. Tsuji and K. Ueda (1996), ‘Time and size of a giant earthquake in Cascadia inferred from Japanese tsunami records of January 1700’, Nature 379, 246249.

K. Satake , K. Wang and B. Atwater (2003), ‘Fault slip and seismic moment of the 1700 Cascadia earthquake inferred from Japanese tsunami descriptions’, J. Geophys. Res. 108, 2535.

C. Synolakis , J. Bardet , J. Borrero , H. Davies , E. Okal , E. Silver , S. Sweet and D. Tappin (2002), ‘The slump origin of the 1998 Papua New Guinea tsunami’, Proc. Royal Soc. London Ser. A: Math. Phys. Engrg Sci. 458, 763.

C. E. Synolakis and E. N. Bernard (2006), ‘Tsunami science before and beyond Boxing Day 2004’, Philos. Trans. Royal Soc. A: Math. Phys. Engrg Sci. 364, 2231.

C. E. Synolakis , E. N. Bernard , V. V. Titov , U. Kânoğlu and F. I. González (2008), ‘Validation and verification of tsunami numerical models’, Pure Appl. Geophys. 165, 21972228.

V. V. Titov and C. E. Synolakis (1995), ‘Modeling of breaking and nonbreaking long wave evolution and runup using VTCS-2’, J. Waterways, Ports, Coastal and Ocean Engineering 121, 308316.

V. V. Titov and C. E. Synolakis (1998), ‘Numerical modeling of tidal wave runup’, J. Waterways, Ports, Coastal and Ocean Engineering 124, 157171.

V. V. Titov , F. I. Gonzalez , E. N. Bernard , M. C. Eble , H. O. Mofjeld , J. C. Newman and A. J. Venturato (2005), ‘Real-time tsunami forecasting: Challenges and solutions’, Nat. Hazards 35, 3541.

X. Wang and P. L. Liu (2007), ‘Numerical simulations of the 2004 Indian Ocean tsunamis: Coastal effects’, J. Earthquake Tsunami 1, 273297.

P. Watts , S. Grilli , J. Kirby , G. J. Fryer and D. R. Tappin (2003), ‘Landslide tsunami case studies using a Boussinesq model and a fully nonlinear tsunami generation model’, Nat. Haz. Earth Sys. Sci. 3, 391402.

R. Weiss , H. Fritz and K. Wünnemann (2009), ‘Hybrid modeling of the megatsunami runup in Lituya Bay after half a century’, Geophys. Res. Lett. 36, L09602.

H. Yeh , R. K. Chadha , M. Francis , T. Katada , G. Latha , C. Peterson , G. Raghu-ramani and J. P. Singh (2006), ‘Tsunami runup survey along the southeast Indian coast’, Earthquake Spectra 22, S173–S186.

H. Yeh , P. Liu , M. Briggs and C. Synolakis (1994), ‘Propagation and amplification of tsunamis at coastal boundaries’, Nature 372, 353355.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Acta Numerica
  • ISSN: 0962-4929
  • EISSN: 1474-0508
  • URL: /core/journals/acta-numerica
Please enter your name
Please enter a valid email address
Who would you like to send this to? *