Skip to main content
×
×
Home

RoboWeedSupport - Presentation of a cloud based system bridging the gap between in-field weed inspections and decision support systems

  • P. Rydahl (a1), N.-P. Jensen (a2), M. Dyrmann (a3), P. H. Nielsen (a4) and R. N. Jørgensen (a5)...
Abstract

In order to exploit potentials of 20–40% reduction of herbicide use, as documented by use of Decision Support Systems (DSS), where requirements for manual field inspection constitute a major obstacle, large numbers of digital pictures of weed infestations have been collected and analysed manually by crop advisors. Results were transferred to: 1) DSS, which determined needs for control and connected, optimized options for control returned options for control and 2) convolutional, neural networks, which in this way were trained to enable automatic analysis of future pictures, which support both field- and site-specific integrated weed management.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      RoboWeedSupport - Presentation of a cloud based system bridging the gap between in-field weed inspections and decision support systems
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      RoboWeedSupport - Presentation of a cloud based system bridging the gap between in-field weed inspections and decision support systems
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      RoboWeedSupport - Presentation of a cloud based system bridging the gap between in-field weed inspections and decision support systems
      Available formats
      ×
Copyright
Corresponding author
E-mail: per.rydahl@ipmconsult.dk
References
Hide All
Been, T, Berti, A, Evans, N, Gouache, D, Volkmar, G, Jensen, JE, Kapsa, J, Levay, N, Munier-Jolain, N, Nibouche, S, Raynal, M and Rydahl, P 2009. Review of new technologies critical to effective implementation of Decision Support Systems (DSS’s) and Farm Management Systems (FMS’s) Aarhus University, Denmark, 6th March 2009. http://www.endure-network.eu/content/download/4803/39494/file/Review%20of%20new%20technologies%20critical%20to%20effective%20implementation%20of%20decision%20support%20systems%20and%20farm%20management%20systems.pdf
Dyrmann, M, Jørgensen, RM and Midtiby, HS 2017. RoboWeedSupport - Detection of weed locations in leaf occluded cereal crops using a fully convolutional neural network. In this volume.
Dyrmann, M and Jørgensen, RN 2015. “RoboWeedSupport: Weed Recognition for Reduction of Herbicide Consumption.” In Precision Agriculture ’15, edited by JV Stafford, 571578. Wageningen Academic Publishers Books, The Netherlands.
Dyrmann, Mads, Karstoft, Henrik and Midtiby, Henrik Skov 2016a. “Plant Species Classification Using Deep Convolutional Neural Network.” Biosystems Engineering 151, 7280.
Dyrmann, Mads, Mortensen, Anders Krogh, Midtiby, Henrik Skov and Jørgensen, Rasmus Nyholm 2016b. “Pixel-Wise Classification of Weeds and Crop in Images by Using a Fully Convolutional Neural Network.” In International Conference on Agricultural Engineering 2016. Aarhus University. http://conferences.au.dk/uploads/tx_powermail/cigr2016paper_semanticsegmentation.pdf
Jørgensen, LN, Noe, E, Langvad, AM, Jensen, JE, Orum, JE and Rydahl, P 2007. Decision support systems: barriers and farmers’ need for support. EPPO Bulletin 37 (2), 374377.
Laursen, MS, Jorgensen, RN, Dyrmann, M and Poulsen, RN 2017. RoboWeedSupport - Sub millimeter weed image acquisition in cereal crops with speeds up till 50 km/h. In this volume.
Montull, JM 2016. Adapting the Decision Support System CPOWeeds to optimize weed control in northern Spanish conditions. PhD dissertation, Departament de Hortofruticulture, Botanica in Jardineria, Universitat de Lleida, Spain.
Rydahl, P and Bøjer, 2016. ‘IPMwise’, customized for conditions in Denmark (dk.ipmwise.com).
Rydahl, P 2004. A Danish decision support system for integrated management of weeds. Aspects of Applied Biology 72, Advances in Applied Biology: Providing New Opportunities for Consumers and Producers in the 21st Century, 2004, p. 43–53.
Sønderskov, M, Fritzsche, R, de Mol, F, Gerowitt, B, Goltermann, S, Kierzek, R, Krawczyk, R, Bøjer, OM and Rydahl, P 2015. DSSHerbicide: Weed control in winter wheat with a decision support system in three South Baltic regions – Field experimental results, Crop Protection, Volume 76, October 2015, Pp 15–23.
Sønderskov, M, Kudsk, P, Mathiassen, SK, Bøjer, OM and Rydahl, P 2014. Decision Support System for Optimized Herbicide Dose in Spring Barley. Weed Technology: January–March 28 (1), 1927.
Tørresen, KS, Netland, J and Rydahl, P 2004. Norsk utgave av det danske beslutningsstøtte-systemet Planteværn Online for ugrassprøyting i korn. Grønn kunnskap 8 (2), 100109.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Advances in Animal Biosciences
  • ISSN: 2040-4700
  • EISSN: 2040-4719
  • URL: /core/journals/advances-in-animal-biosciences
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed