Skip to main content
×
Home
    • Aa
    • Aa

Application of Modified Couple Stress Theory and Homotopy Perturbation Method in Investigation of Electromechanical Behaviors of Carbon Nanotubes

  • Mir Masoud Seyyed Fakhrabadi (a1)
Abstract
Abstract

The paper presents the size-dependant behaviors of the carbon nanotubes under electrostatic actuation using the modified couple stress theory and homotopy perturbation method. Due to the less accuracy of the classical elasticity theorems, the modified couple stress theory is applied in order to capture the size-dependant properties of the carbon nanotubes. Both of the static and dynamic behaviors under static DC and step DC voltages are discussed. The effects of various dimensions and boundary conditions on the deflection and pull-in voltages of the carbon nanotubes are to be investigated in detail via application of the homotopy perturbation method to solve the nonlinear governing equations semi-analytically.

Copyright
Corresponding author
*Corresponding author. Email: mfakhrabadi@ut.ac.ir, msfakhrabadi@gmail.com (M. M. S. Fakhrabadi)
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

[1] S. Iijima , Helical microtubules of graphitic carbon, Nature, 354(6348) (1991), pp. 5658.

[2] M. Sung , S.-U. Paek , S.-H. Ahn and J. H. Lee , A study of carbon-nanotube-based nanoelectromechanical resonators tuned by shear strain, Comput. Mater. Sci., 51(1) (2012), pp. 360364.

[3] O. Loh , X. Wei , J. Sullivan , L. E. Ocola , R. Divan and H. D. Espinosa , Carbon-carbon contacts for robust nanoelectromechanical switches, Adv. Mater., 24(18) (2012), pp. 24632468.

[4] C. L. Cheng and G. J. Zhao , Steered molecular dynamics simulation study on dynamic self-assembly of single-stranded DNA with double-walled carbon nanotube and graphene, Nanoscale, 4(7) (2012), pp. 23012305.

[5] S. Adhikari and R. Chowdhury , The calibration of carbon nanotube based bionanosensors, J. Appl. Phys., 107(12) (2010), pp. 124322124322.

[6] A. Koochi , A. S. Kazemi , A. Noghrehabadi , A. Yekrangi and M. Abadyan , New approach to model the buckling and stable length of multi walled carbon nanotube probes near graphite sheets, Mater. Design, 32(5) (2011), pp. 29492955.

[7] M. M. S. Fakhrabadi , M. Samadzadeh , A. Rastgoo , M. H. Yazdi and M. M. Mashhadi , Vibrational analysis of carbon nanotubes using molecular mechanics and artificial neural network, Physica E: Low-Dimensional Systems and Nanostructures, 44(3) (2011), pp. 565578.

[8] M. M. S. Fakhrabadi , A. Amini , F. Reshadi , N. Khani and A. Rastgoo , Investigation of buckling and vibration properties of hetero-junctioned and coiled carbon nanotubes, Comput. Mater. Sci., 73 (2013), pp. 93112.

[9] X. Huang , H. Yuan , W. Liang and S. Zhang , Mechanical properties and deformation morphologies of covalently bridged multi-walled carbon nanotubes: multiscale modeling, J. Mech. Phys. Solids, 58(11) (2010), pp. 18471862.

[10] S. C. Pradhan and T. Murmu , Small-scale effect on vibration analysis of single-walled carbon nanotubes embedded in an elastic medium using nonlocal elasticity theory, J. Appl. Phys., 105(12) (2009), pp. 124306124306.

[11] R. Ansola , E. Veguería , J. Canales and C. Alonso , Evolutionary optimization of compliant mechanisms subjected to non-uniform thermal effects, J. Finite. Elements. Anal. Design, 57 (2012), pp. 114.

[13] M. M. Zand , The dynamic pull-in instability and snap-through behavior of initially curved microbeams, J. Mech. Adv. Mat. Struct., 19 (2012), pp. 485491.

[14] J. S. Stölken and A. G. Evans , A microbend test method for measuring the plasticity length scale, Acta Materialia, 46(14) (1998), pp. 51095115.

[20] R. D. Mindlin and H. F. Tiersten , Effects of couple-stresses in linear elasticity, Archive Rat. Mech. Anal., 11(1) (1962), pp. 415448.

[18] R. A. Toupin , Elastic materials with couple-stresses, Archive Rat. Mech. Anal., 11(1) (1962), pp. 385414.

[19] R. D. Mindlin , Influence of couple-stresses on stress concentrations, Exp. Mech., 3(1) (1963), pp. 17.

[21] M. Dequesnes , S. V. Rotkin and N. R. Aluru , Calculation of pull-in voltages for nanoelectromechanical switches, J. Nanotech., 13 (2002), pp. 120131.

[23] C. Ke , H. D. Espinosa and N. Pugno , Numerical analysis of nanotube based NEMS devices– part II: role of finite kinematics, stretching and charge concentration, J. Appl.Mech., 72 (2005), pp. 726731.

[24] H. M. Ouakad and M. I. Younis , Nonlinear dynamics of electrically actuated carbon nanotube resonators, J. Comput. Nonlinear Dyn., 5 (2010), pp. 113.

[25] R. Soroush , A. Koochi , A. S. Kazemi , A. Noghrehabadi , H. Haddadpour and M. Abadyan , Investigating the effect of Casimir and van der Waals attractions on the electrostatic pull-in instability of nano actuators, J. Phys. Scr., 82 (2010), 045801.

[26] A. Koochi , A. Kazemi , F. Khandani and M. Abadyan , Influence of surface effects on size-dependent instability of nano-actuators in the presence of quantum vacuum fluctuations, J. Phys. Scr., 85 (2012), 035804.

[27] M. Abadyan , A. Novinzadeh and A. Kazemi , Approximating the effect of the Casimir force on the instability of electrostatic nano-cantilevers, J. Phys. Scr., 81 (2010), 015801.

[28] A. Koochi , A. Noghrehabadi , M. Abadyan and E. Roohi , Approximating the effect of van der Waals force on the instability of electrostatic nano-cantilevers, Int. J. Modern Phys. B, 25(29) (2011), pp. 39653976.

[29] J. Abdi , A. Koochi , A. S. Kazemi and M. Abadyan , Modeling the effects of size dependence and dispersion forces on the pull-in instability of electrostatic cantilever NEMS using modified couple stress theory, Smart Mater. Struct., 20 (2011), 055011.

[30] J. H. He , Homotopy perturbation technique, Comput. Methods Appl. Mech. Eng., 178(3) (1999), pp. 257262.

[16] F. Yang , A. C. M. Chong , D. C. C. Lam and P. Tong , Couple stress based strain gradient theory for elasticity, Int. J. Solids Structures, 39(10) (2002), pp. 27312743.

[32] C. H. Ke , N. Pugno , B. Peng and H. D. Espinosa , Experiments and modeling of carbon nanotube-based NEMS devices, J. Mech. Phys. Solids, 53(6) (2005), pp. 13141333.

[33] M. M. S. Fakhrabadi , A. Rastgoo and M. T. Ahmadian , Analysis of pull-in instability of electrostatically actuated carbon nanotubes using the homotopy perturbation method, J. Mech. Mater. Struct., 8(8) (2013), pp. 385401.

[34] M. Mojahedi , M. M. Zand and M. T. Ahmadian , J. Appl. Math. Model., 34 (2010), pp. 10321041.

[35] M. Moghimi Zand and M. T. Ahmadian , Application of homotopy analysis method in studying dynamic pull-in instability of microsystems, Mech. Res. Commun., 36(7) (2009), pp. 851858.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Advances in Applied Mathematics and Mechanics
  • ISSN: 2070-0733
  • EISSN: 2075-1354
  • URL: /core/journals/advances-in-applied-mathematics-and-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 80 *
Loading metrics...

Abstract views

Total abstract views: 433 *
Loading metrics...

* Views captured on Cambridge Core between 11th October 2016 - 25th July 2017. This data will be updated every 24 hours.