Skip to main content
×
Home

Structure-Preserving Wavelet Algorithms for the Nonlinear Dirac Model

  • Xu Qian (a1) (a2), Hao Fu (a1) and Songhe Song (a1) (a3)
Abstract
Abstract

The nonlinear Dirac equation is an important model in quantum physics with a set of conservation laws and a multi-symplectic formulation. In this paper, we propose energy-preserving and multi-symplectic wavelet algorithms for this model. Meanwhile, we evidently improve the efficiency of these algorithms in computations via splitting technique and explicit strategy. Numerical experiments are conducted during long-term simulations to show the excellent performances of the proposed algorithms and verify our theoretical analysis.

Copyright
Corresponding author
*Corresponding author. Email: shsong@nudt.edu.cn (S. H. Song)
References
Hide All
[1] Hong J. and Li C., Multi-symplectic Runge-Kutta methods for nonlinear Dirac equations, J. Comput. Phys., 211 (2006), pp. 448472.
[2] Xu J., Shao S. and Tang H., Numerical methods for nonlinear Dirac equation, J. Comput. Phys., 245 (2013), pp. 131149.
[3] Alvarez A., Linear Crank-Nicholsen scheme for nonlinear Dirac equations, J. Comput. Phys., 99 (1992), pp. 348350.
[4] Alvarez A. and Carreras B., Interaction dynamics for the solitary waves of a nonlinear Dirac model, Phys. Lett. A, 86 (1981), pp. 327332.
[5] Wang H. and Tang H. Z., An efficient adaptive mesh redistribution method for a nonlinear Dirac equation, J. Comput. Phys., 222 (2007), pp. 176193.
[6] De Frutos J. and Sanz-Serna J. M., Split-step spectral schemes for nonlinear Dirac systems, J. Comput. Phys., 83 (1989), pp. 407423.
[7] Shao S. and Tang H., Interaction for the solitary waves of a nonlinear Dirac model, Phys. Lett. A, 345 (2005), pp. 119128.
[8] Shao S. and Tang H., Interaction of solitary waves with a phase shift in a nonlinear Dirac model, Commun. Comput. Phys., 3 (2008), pp. 950967.
[9] Bridges T. and Reich S., Multi-symplectic integrators: numerical schemes for Hamiltonian PDEs that conserve symplecticity, Phys. Lett. A, 284 (2001), pp. 184193.
[10] Zhu H., Tang L., Song S., Tang Y. and Wang D., Symplectic wavelet collocation method for Hamiltonian wave equations, J. Comput. Phys., 229 (2010), pp. 25502572.
[11] Zhu H., Song S. and Chen Y., Multi-symplectic wavelet collocation method for Maxwell’s equations, Adv. Appl. Math. Mech., 3 (2011), pp. 663688.
[12] Zhu H., Song S. and Tang Y., Multi-symplectic wavelet collocation method for the nonlinear Schrödinger equation and the Camassa–Holm equation, Comput. Phys. Commun., 182 (2011), pp. 616627.
[13] Qian X., Chen Y. and Song S., Novel conservative methods for Schrödinger equations with variable coefficients over long time, Commun. Comput. Phys., 15 (2014), pp. 692711.
[14] Mclachlan R. and Quispel G., Splitting methods, Acta Numer., 11 (2002), pp. 341434.
[15] Ryland B., Mclachlan R. and Frank J., On the multisymplecticity of partitioned Runge–Kutta and splitting methods, Int. J. Comput. Math., 84 (2007), pp. 847869.
[16] Kong L., Hong J., Fu F. and Chen J., Symplectic structure-preserving integrators for the two-dimensional Gross–Pitaevskii equation for BEC, J. Comput. Appl. Math., 235 (2011), pp. 49374948.
[17] Ma Y., Kong L., Hong J. and Cao Y., High-order compact splitting multisymplectic method for the coupled nonlinear Schrödinger equations, Comput. Math. Appl., 61 (2011), pp. 319333.
[18] Chen Y., Zhu H. and Song S., Multi-symplectic splitting method for two-dimensional nonlinear Schrödinger equation, Commun. Theor. Phys., 56 (2011), pp. 617622.
[19] Qian X., Song S. and Chen Y., A semi-explicit multi-symplectic splitting scheme for 3-coupled nonlinear Schrödinger equation, Comput. Phys. Commun., 185 (2014), pp. 12551264.
[20] Qian X., Song S., Gao E. and Li W., Explicit multi-symplectic method for the Zakharov–Kuznetsov equation, China Phys. B, 21 (2012), 070206.
[21] Reich S., Multi-symplectic Runge-Kutta collocation methods for Hamiltonian wave equations, J. Comput. Phys., 157 (2000), pp. 473499.
[22] Bridges T. and Reich S., Multi-symplectic spectral discretizations for the Zakharov-Kuznetsov and shallow water equations, Phys. D, 152 (2001), pp. 491504.
[23] Chen J. and Qin M., Multi-symplectic Fourier pseudospectral method for the nonlinear Schrödinger equation, Electron. Trans. Numer. Anal., 12 (2001), pp. 193204.
[24] Chen J., Qin M. and Tang Y., Symplectic and multi-symplectic methods for the nonlinear Schrödinger equation, Comput. Math. Appl., 43 (2002), pp. 10951106.
[25] Wang Y., Jiang J. and Cai W., Numerical analysis of a multi-symplectic scheme for the time-domain Maxwell's equations, J. Math. Phys., 52 (2011), 123701.
[26] Aydin A. and Karasözen B., Symplectic and multi-symplectic methods for coupled nonlinear Schrödinger equations with periodic solutions, Comput. Phys. Commun., 177 (2007), pp. 566583.
[27] Aydin A. and Karasözen B., Lobatto IIIA-IIIB discretization of the strongly coupled nonlinear Schrödinger equation, J. Comput. Appl. Math., 235 (2011), pp. 47704779.
[28] Frank J., Conservation of wave action under multisymplectic discretizations, J. Phys. A Math. Gen., 39 (2006), pp. 54795493.
[29] Frank J., Moore B. and Reich S., Linear PDEs and numerical method that preserve a multisymplectic conservation law, SIAM J. Sci. Comput., 28 (2006), pp. 260277.
[30] Moore B. and Reich S., Backward error analysis for multi-symplectic integration methods, Numer. Math., 95 (2003), pp. 625652.
[31] Moore B., Conformal multi-symplectic integration methods for forced-damped semi-linear wave equations, Math. Comput. Simul., 80 (2009), pp. 2028.
[32] Hong J. and Sun Y., Generating functions of multi-symplectic RK methods via DW Hamilton–Jacobi equations, Numer. Math., 110 (2008), pp. 491519.
[33] Ascher U. and Mclachlan R., Multi symplectic box schemes and the Korteweg-de Vries equation, Appl. Numer. Math., 48 (2004), pp. 255269.
[34] Islas A. and Schober C., On the preservation of phase space structure under multisymplectic discretization, J. Comput. Phys., 197 (2004), pp. 585609.
[35] Miyatake Y., Yaguchi T. and Matsuo T., Numerical integration of the Ostrovsky equationbased on its geometric structures, J. Comput. Phys., 231 (2012), pp. 45424559.
[36] Strang G., On the construction and comparison of difference scheme, SIAM J. Numer. Anal., 5 (1968), pp. 506517.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Advances in Applied Mathematics and Mechanics
  • ISSN: 2070-0733
  • EISSN: 2075-1354
  • URL: /core/journals/advances-in-applied-mathematics-and-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 40 *
Loading metrics...

Abstract views

Total abstract views: 213 *
Loading metrics...

* Views captured on Cambridge Core between 18th January 2017 - 25th November 2017. This data will be updated every 24 hours.