[1]
Abate, J. and Whitt, W. (2006).A unified framework for numerically inverting Laplace transforms.INFORMS J. Computing
18,408–421.

[2]
Abu-Dayya, A. A. and Beaulieu, N. C. (1994).Outage probabilities in the presence of correlated lognormal interferers.IEEE Trans. Vehicular Technology
43,164–173.

[3]
Aitchison, J. and Brown, J. A. C. (1957).The Lognormal Distribution with Special Reference to its Uses in Economics.Cambridge University Press.

[4]
Asmussen, S. and Glynn, P. W. (2007).Stochastic Simulation: Algorithms and Analysis (Stoch. Modelling Appl. Prob. 57).Springer,New York.

[5]
Asmussen, S. and Rojas-Nandayapa, L. (2008).Asymptotics of sums of lognormal random variables with Gaussian copula.Statist. Prob. Lett.
78,2709–2714.

[6]
Asmussen, S.,Jensen, J. L. and Rojas-Nandayapa, L. (2016).On the Laplace transform of the lognormal distribution. To appear in Methodology Comput. Appl. Prob., 18pp.

[7]
Asmussen, S.,Jensen, J. L. and Rojas-Nandayapa, L. (2016).Exponential family techniques in the lognormal left tail. To appear in Scand. J. Statist.

[8]
Avdis, E. and Whitt, W. (2007).Power algorithms for inverting Laplace transforms.INFORMS J. Computing
19,341–355.

[9]
Beaulieu, N. C. and Rajwani, F. (2004).Highly accurate simple closed-form approximations to lognormal sum distributions and densities.IEEE Commun. Lett.
8,709–711.

[10]
Beaulieu, N. C. and Xie, Q. (2004).An optimal lognormal approximation to lognormal sum distributions.IEEE Trans. Vehicular Technology
53,479–489.

[11]
Beaulieu, N. C.,Abu-Dayya, A. A. and McLane, P. J. (1995).Estimating the distribution of a sum of independent lognormal random variables.IEEE Trans. Commun.
43,2869–2873.

[12]
Corless, R. M.,Gonnet, G. H.,Hare, D. E. G.,Jeffrey, D. J. and Knuth, D. E. (1996).On the Lambert W function.Adv. Comput. Math.
5,329–359.

[13]
Crow, E. L. and Shimizu, K. (eds) (1988).Lognormal Distributions: Theory and Applications (Statist. Textb. Monogr. 88).Marcel Dekker,New York.

[14]
Duellmann, K. (2010).Regulatory capital. In Encyclopedia of Quantitative Finance, Vol. IV, ed. R. Cont,John Wiley,New York, pp. 1525–1538.

[15]
Dufresne, D. (2004).The log-normal approximation in financial and other computations.Adv. Appl. Prob.
36,747–773.

[16]
Dufresne, D. (2009).Sums of lognormals. Tech. Rep., Centre for Actuarial Sciences, University of Melbourne.

[17]
Embrechts, P.,Puccetti, G.,Rüschendorf, L.,Wang, R. and Beleraj, A. (2014).An academic response to Basel 3.5.Risks
2,25–48.

[18]
Fenton, L. (1960).The sum of log-normal probability distributions in scatter transmission systems.IRE Trans. Commun. Systems
8,57–67.

[19]
Gao, X.,Xu, H. and Ye, D. (2009).Asymptotic behavior of tail density for sum of correlated lognormal variables.Internat. J. Math. Math. Sci.
2009, 28pp.

[20]
Glasserman, P. (2003).Monte Carlo Methods in Financial Engineering (Stoch. Model. Appl. Prob. 53).Springer,New York.

[22]
Johnson, N. L.,Kotz, S. and Balakrishnan, N. (1994).Continuous Univariate Distributions, Vol. 1,2nd edn.John Wiley,New York.

[24]
Limpert, E.,Stahel, W. A. and Abbt, M. (2001).Log-normal distributions across the sciences: keys and clues.Bioscience
51,341–352.

[26]
Markowitz, H. (1952).Portfolio selection.J. Finance
7,77–91.

[27]
McNeil, A. J.,Frey, R. and Embrechts, P. (2015).Quantitative Risk Management: Concepts, Techniques and Tools,2nd edn.Princeton University Press.

[28]
Milevsky, M. A. and Posner, S. E. (1998).Asian options, the sum of lognormals, and the reciprocal gamma distribution.J. Financial Quant. Anal.
33,409–422.

[29]
Schwartz, S. C. and Yeh, Y.-S. (1982).On the distribution function and moments of power sums with log-normal components.Bell System Tech. J.
61,1441–1462.

[30]
Stehfest, H. (1970).Algorithm 368: Numerical inversion of Laplace transforms [D5].Commun. ACM
13,47–49.