Skip to main content
×
×
Home

Coefficients of ergodicity: structure and applications

  • E. Seneta (a1)
Abstract

The concept of ‘coefficient of ergodicity’, τ(P), for a finite stochastic matrix P, is developed from a standpoint more general and less standard than hitherto, albeit synthesized from ideas in existing literature. Several versions of such a coefficient are studied theoretically and by numerical examples, and usefulness in applications compared from viewpoints which include the degree to which extension to more general matrices is possible. Attention is given to the less familiar spectrum localization property: where λ is any non-unit eigenvalue of P. The essential purpose is exposition and unification, with the aid of simple informal proofs.

Copyright
Corresponding author
Postal addresss: Department of Statistics, The Australian National University, S.G.S., P.O. Box 4, Canberra A.C.T. 2600, Australia.
Footnotes
Hide All

Invited paper presented to 8th Conference on Stochastic Processes and their Applications, Canberra, 6–10 July, 1978.

Footnotes
References
Hide All
1. Alpin, Yu. A. and Gabassov, N. Z. (1976) A remark on the problem of localization of the eigenvalues of real matrices (in Russian). Izv. Vyssh. Uchebn. Zaved. Matematika 11 (174), 98100.
2. Anthonisse, J. M. and Tijms, H. (1977) Exponential convergence of products of stochastic matrices. J. Math. Anal. Appl. 59, 360364.
3. Bernstein, S. N. (1946) Teoriya Veroiatnostei, 4th edn. Gostehizdat, Moscow–Leningrad. (Relevant portions are reprinted in [4].)
4. Bernstein, S. N. (1964) Classification of Markov chains and their matrices (in Russian). Sobranie Sochineniy: Tom TV, Teoriya Veroiatnostei i Matematicheskaia Statistika [1911–1946], pp. 455483. Nauka, Moscow.
5. Birkhoff, G. (1967) Lattice Theory, 3rd edn. Amer. Math. Soc. Colloq. Publicns. Vol XXV, Providence, R.I.
6. Blagoveshchenskii, Yu. N. (1960) On ergodicity for a scheme of series of Markov chains with a finite number of states and discrete time (in Russian) Izv. Akad. Nauk Uzbek. SSR. Ser. fiz.-mat. 4, (3), 715.
7. Brauer, A. (1952) Limits for the characteristic roots of a matrix IV: Applications to stochastic matrices. Duke Math. J. 19, 7591.
8. Chatterjee, S. and Seneta, E. (1977) Towards consensus: some convergence theorems on repeated averaging. J. Appl. Prob. 14, 8997.
9. Cohn, H. (1976) Finite non-homogeneous Markov chains: asymptotic behaviour. Adv. Appl. Prob. 8, 502516.
10. Dobrushin, R. L. (1956) Central limit theorem for non-stationary Markov chains, I, II. Theory Prob. Appl. 1, 6580, 329–383. (English translation.)
11. Golubitsky, M., Keeler, E. B. and Rothschild, M. (1975) Convergence of the age structure; applications of the projective metric. Theoret. Popn Biol. 7, 8493.
12. Hajnal, J. (1958) Weak ergodicity in non-homogeneous Markov chains. Proc. Camb. Phil. Soc. 54, 233246.
13. Hajnal, J. (1976) On products of non-negative matrices. Math. Proc. Camb. Phil. Soc. 79, 521530.
14. Iosifescu, M. (1977) Lanturi Markov Finite şi Aplicaţii. ed. Tehniča, Bucharest.
15. Isaacson, D. L. and Madsen, R. W. (1976) Markov Chains. Wiley, New York.
16. Kingman, J. F. C. (1975) Geometrical aspects of the theory of non-homogeneous Markov chains. Math. Proc. Camb. Phil. Soc. 77, 171183.
17. Kolmogorov, A. N. (1931) Über die analytischen Methoden in der Wahrscheinlichkeitsrechnung. Math. Ann. 104, 415458.
18. Krysanov, A. I., Kuzin, L. T., and Letunov, Yu. P. (1971) Some asymptotic estimates of the convergence of discrete Markov chains. Engineering Cybernetics 9, 10951101. (English translation.)
19. Paz, A. (1965) Definite and quasidefinite sets of stochastic matrices. Proc. Amer. Math. Soc. 16, 634641.
20. Paz, A. (1971) Introduction to Probabilistic Automata. Academic Press, New York.
21. Pykh, Yu. A. (1973) The characteristic numbers of stochastic matrices (in Russian). Dokl. Akad. Nauk S.S.S.R. 211, 12991301.
22. Sarymsakov, T. A. (1954) Osnovi Teorii Processov Markova. G.I.T.-T.L., Moscow.
23. Sarymsakov, T. A. (1956) On the theory of inhomogeneous Markov chains (in Russian). Dokl. Akad. Nauk Uzbek S.S.R. 8, 37.
24. Sarymsakov, T. A. (1958) On inhomogeneous Markov chains (in Russian). Dokl. Akad. Nauk S.S.S.R. 120, 465467.
25. Sarymsakov, T. A. (1961) Inhomogeneous Markov chains (in Russian). Teor. Veroiat. Primenen. 6, 194201.
26. Seneta, E. (1973) On the historical development of the theory of finite inhomogeneous Markov chains. Proc. Camb. Phil. Soc. 74, 507513
27. Seneta, E. (1973) On strong ergodicity of inhomogeneous products of finite stochastic matrices. Studia Math. 46, 241247.
28. Seneta, E. (1973) Non-negative Matrices. Allen and Unwin, London.
29. Seneta, E. (1974) [Review of [21], #11167.] Math. Rev. 48, No. 6, p. 1296.
30. Wolfowitz, J. (1963) Products of indecomposable, aperiodic, stochastic matrices. Proc. Amer. Math. Soc. 14, 733737.
31. Zenger, C. (1972) A comparison of some bounds for the non-trivial eigenvalues of stochastic matrices. Numerische Math. 19, 209211.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Advances in Applied Probability
  • ISSN: 0001-8678
  • EISSN: 1475-6064
  • URL: /core/journals/advances-in-applied-probability
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed