Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-30T00:25:01.330Z Has data issue: false hasContentIssue false

Generalised shot-noise representations of stochastic systems driven by non-Gaussian Lévy processes

Published online by Cambridge University Press:  21 March 2024

Simon Godsill*
Affiliation:
University of Cambridge
Ioannis Kontoyiannis*
Affiliation:
University of Cambridge
Marcos Tapia Costa*
Affiliation:
University of Cambridge
*
*Postal address: Floor 9, 16–18 Prince’s Gardens, London SW7 1NE, UK.
*Postal address: Floor 9, 16–18 Prince’s Gardens, London SW7 1NE, UK.
*Postal address: Floor 9, 16–18 Prince’s Gardens, London SW7 1NE, UK.

Abstract

We consider the problem of obtaining effective representations for the solutions of linear, vector-valued stochastic differential equations (SDEs) driven by non-Gaussian pure-jump Lévy processes, and we show how such representations lead to efficient simulation methods. The processes considered constitute a broad class of models that find application across the physical and biological sciences, mathematics, finance, and engineering. Motivated by important relevant problems in statistical inference, we derive new, generalised shot-noise simulation methods whenever a normal variance-mean (NVM) mixture representation exists for the driving Lévy process, including the generalised hyperbolic, normal-gamma, and normal tempered stable cases. Simple, explicit conditions are identified for the convergence of the residual of a truncated shot-noise representation to a Brownian motion in the case of the pure Lévy process, and to a Brownian-driven SDE in the case of the Lévy-driven SDE. These results provide Gaussian approximations to the small jumps of the process under the NVM representation. The resulting representations are of particular importance in state inference and parameter estimation for Lévy-driven SDE models, since the resulting conditionally Gaussian structures can be readily incorporated into latent variable inference methods such as Markov chain Monte Carlo, expectation-maximisation, and sequential Monte Carlo.

Type
Original Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of Applied Probability Trust

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alspach, D. and Sorenson, H. (1972). Nonlinear Bayesian estimation using Gaussian sum approximations. IEEE Trans. Automatic Control 17, 439448.CrossRefGoogle Scholar
Asmussen, S. and Rosinski, J. (2001). Approximations of small jumps of Lévy processes with a view towards simulation. J. Appl. Prob. 38, 482493.CrossRefGoogle Scholar
Barndorff-Nielsen, O. and Shephard, N. (2001). Modelling by Lévy processess for financial econometrics. In Lévy Processes: Theory and Applications, eds O. Barndorff-Nielsen, S. Resnick and T. Mikosch, Birkhäuser, Boston, pp. 283–318.CrossRefGoogle Scholar
Barndorff-Nielsen, O. E. and Shephard, N. (2001). Normal modified stable processes. Theory Prob. Math. Statist. 65, 119.Google Scholar
Barndorff-Nielsen, O. E. and Shephard, N. (2012). Basics of Lévy processes. Working paper. Available at http://ora.ox.ac.uk/objects/uuid:8787765a-1d95-45cd-97d8-930fe8816d97.Google Scholar
Bateman, H. and Erdélyi, A. (2006). Higher Transcendental Functions, Vol. 2. Dover, New York.Google Scholar
Black, F. and Scholes, M. (1973). The pricing of options and corporate liabilities. J. Political Econom. 81, 637654.CrossRefGoogle Scholar
Bondesson, L. (1982). On simulation from infinitely divisible distributions. Adv. Appl. Prob. 14, 855869.CrossRefGoogle Scholar
Box, G. and Muller, M. (1958). A note on the generation of random normal deviates. Ann. Math. Statist. 29, 610611.CrossRefGoogle Scholar
Cappé, O., Godsill, S. and Moulines, E. (2007). An overview of existing methods and recent advances in sequential Monte Carlo. Proc. IEEE 95, 899–924.CrossRefGoogle Scholar
Carpentier, A., Duval, C. and Mariucci, E. (2021). Total variation distance for discretely observed Lévy processes: a Gaussian approximation of the small jumps. Ann. Inst. H. Poincaré Prob. Statist. 57, 901939.CrossRefGoogle Scholar
Cont, R. and Tankov, P. (2004). Financial Modelling with Jump Processes. CRC Press, New York.Google Scholar
Deligiannidis, G., Maurer, S. and Tretyakov, M. (2021). Random walk algorithm for the Dirichlet problem for parabolic integro-differential equation. BIT Numer. Math. 61, 12231269.CrossRefGoogle Scholar
Dia, E. (2013). Error bounds for small jumps of Lévy processes. Adv. Appl. Prob. 45, 86105.CrossRefGoogle Scholar
Eberlein, E. (2001). Application of generalized hyperbolic Lévy motions to finance. In Lévy Processes: Theory and Applications, eds O. Barndorff-Nielsen, S. Resnick and T. Mikosch, Birkhäuser, Boston, pp. 319–336.CrossRefGoogle Scholar
Eberlein, E. (2009). Jump-type Lévy processes. In Handbook of Financial Time Series, Springer, Berlin, Heidelberg, pp. 439455.CrossRefGoogle Scholar
El Adlouni, S., Chebana, F. and Bobée, B. (2010). Generalized extreme value versus Halphen system: exploratory study. J. Hydrolog. Eng. 15, 7989.CrossRefGoogle Scholar
Ferguson, T. and Klass, M. (1972). A representation of independent increment processes without Gaussian components. Ann. Math. Statist. 43, 16341643.CrossRefGoogle Scholar
Fournier, N. (2011). Simulation and approximation of Lévy-driven stochastic differential equations. ESAIM Prob. Statist. 15, 233248.CrossRefGoogle Scholar
Freitas, P. (2018). Sharp bounds for the modulus and phase of Hankel functions with applications to Jaeger integrals. Math. Comput. 87, 289308.CrossRefGoogle Scholar
Gan, R., Ahmad, B. and Godsill, S. (2021). Lévy state-space models for tracking and intent prediction of highly maneuverable objects. IEEE Trans. Aerospace Electron. Systems 57, 20212038.CrossRefGoogle Scholar
Godsill, S. and Kndap, Y. (2022). Point process simulation of generalised inverse Gaussian processes and estimation of the Jaeger integral. Statist. Comput. 32, article no. 13.CrossRefGoogle Scholar
Godsill, S., Riabiz, M. and Kontoyiannis, I. (2019). The Lévy state space model. In 2019 53rd Asilomar Conference on Signals, Systems, and Computers, Institute of Electrical and Electronics Engineers, Piscataway, NJ, pp. 487494.CrossRefGoogle Scholar
Christensen, H. L., Murphy, J. and Godsill, S. J. (2012). Forecasting high-frequency futures returns using online Langevin dynamics. IEEE J. Sel. Topics Signal Process. 6, 366380.CrossRefGoogle Scholar
Iyengar, S. and Liao, Q. (1997). Modeling neural activity using the generalized inverse Gaussian distribution. Biol. Cybernet. 77, 289295.CrossRefGoogle ScholarPubMed
Kallenberg, O. (1997). Foundations of Modern Probability. Springer, Cham.Google Scholar
Kalman, R. (1960). A new approach to linear filtering and prediction problems. Trans. ASME J. Basic Eng. 82, 3545.CrossRefGoogle Scholar
Kantas, N. et al. (2015). On particle methods for parameter estimation in state-space models. Statist. Sci. 30, 328351.CrossRefGoogle Scholar
Khintchine, A. (1937). Zur Theorie der unbeschränkt teilbaren Verteilungsgesetze. Mat. Sb. 2, 79119.Google Scholar
Kohatsu-Higa, A. and Tankov, P. (2010). Jump-adapted discretization schemes for Lévy-driven SDEs. Stoch. Process. Appl. 120, 22582285.CrossRefGoogle Scholar
Küchler, U. and Tappe, S. (2013). Tempered stable distributions and processes. Stoch. Process. Appl. 123, 42564293.CrossRefGoogle Scholar
Kummer, E. (1837). De integralibus quibusdam definitis et seriebus infinitis. J. reine angew. Math. 17, 228242.Google Scholar
Lemke, T. and Godsill, S. (2015). Inference for models with asymmetric $\alpha$ -stable noise processes. In Unobserved Components and Time Series Econometrics, Oxford University Press, pp. 190217.CrossRefGoogle Scholar
Madan, D., Carr, P. and Chang, E. (1998). The variance gamma process and option pricing. Rev. Finance 2, 79105.CrossRefGoogle Scholar
Landis, M. J., Schraiber, J. and Liang, M. (2013). Phylogenetic analysis using Lévy processes: finding jumps in the evolution of continuous traits. Systematic Biol. 62, 193204.CrossRefGoogle ScholarPubMed
Pollard, D. (1984). Convergence of Stochastic Processes. Springer, New York.CrossRefGoogle Scholar
Riabiz, M., Ardeshiri, T., Kontoyiannis, I. and Godsill, S. (2020). Non-asymptotic Gaussian approximation for inference with stable noise. IEEE Trans. Inf. Theory 66, 49664991.CrossRefGoogle Scholar
Rosinski, J. (1991). On a class of infinitely divisible processes represented as mixtures of Gaussian processes. In Stable Processes and Related Topics: A Selection of Papers from the Mathematical Sciences Institute Workshop, eds S. Cambanis, G. Samorodnitsky and M. Taqqu, Birkhäuser, Boston, pp. 27–41.CrossRefGoogle Scholar
Rosinski, J. (2001). Series representations of Lévy processes from the perspective of point processes. In Lévy Processes: Theory and Applications, eds O. E. Barndorff-Nielsen, S. I. Resnick and T. Mikosch, Birkhäuser, Boston, pp. 401–415.CrossRefGoogle Scholar
Rosinski, J. (2007). Tempering stable processes. Stoch. Process. Appl. 117, 677707.CrossRefGoogle Scholar
Russo, T. et al. (2009). Lévy processes and stochastic von Bertalanffy models of growth, with application to fish population analysis. J. Theoret. Biol. 258, 521529.CrossRefGoogle Scholar
Samorodnitsky, G. and Taqqu, M. (2017). Stable Non-Gaussian Random Processes: Stochastic Models with Infinite Variance. Routledge, New York.CrossRefGoogle Scholar
Udoye, A. and Ekhaguere, G. (2022). Sensitivity analysis of interest rate derivatives in a variance gamma markets. Palestine J. Math. 11, 159176.Google Scholar
Vlad, B. and Yifeng, Q. (2022). Total variation distance between a jump-equation and its Gaussian approximation. Stoch. Partial Differential Equat. 10, 12111260.Google Scholar
Watson, G. (1944). A Treatise on the Theory of Bessel Functions, 2nd edn. Cambridge University Press.Google Scholar
Winkel, M. (2010). MS3b/MScMCF: Lévy processes and finance. Unpublished manuscript. Available at www.stats.ox.ac.uk/winkel/ms3b10.pdf.Google Scholar
Wolpert, R. and Ickstadt, K. (1998). Simulation of Lévy random fields. In Practical Nonparametric and Semiparametric Bayesian Statistics, eds D. Dey, P. Müller and D. Sinha, Springer, New York, pp. 227–242.CrossRefGoogle Scholar
Woodard, D., Wolpert, R. and O’Connell, M. (2010). Spatial inference of nitrate concentrates in groundwater. J. Agric. Biol. Environm. Statist. 15, 209227.CrossRefGoogle Scholar