Skip to main content
×
×
Home

Importance sampling and the two-locus model with subdivided population structure

  • Robert C. Griffiths (a1), Paul A. Jenkins (a1) and Yun S. Song (a2)
Abstract

The diffusion-generator approximation technique developed by De Iorio and Griffiths (2004a) is a very useful method of constructing importance-sampling proposal distributions. Being based on general mathematical principles, the method can be applied to various models in population genetics. In this paper we extend the technique to the neutral coalescent model with recombination, thus obtaining novel sampling distributions for the two-locus model. We consider the case with subdivided population structure, as well as the classic case with only a single population. In the latter case we also consider the importance-sampling proposal distributions suggested by Fearnhead and Donnelly (2001), and show that their two-locus distributions generally differ from ours. In the case of the infinitely-many-alleles model, our approximate sampling distributions are shown to be generally closer to the true distributions than are Fearnhead and Donnelly's.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Importance sampling and the two-locus model with subdivided population structure
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Importance sampling and the two-locus model with subdivided population structure
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Importance sampling and the two-locus model with subdivided population structure
      Available formats
      ×
Copyright
Corresponding author
Postal address: Department of Statistics, University of Oxford, 1 South Parks Road, Oxford OX1 3TG, UK.
∗∗ Postal address: Departments of EECS and Statistics, University of California, Berkeley, CA 94720, USA. Email address: yss@stat.berkeley.edu
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Advances in Applied Probability
  • ISSN: 0001-8678
  • EISSN: 1475-6064
  • URL: /core/journals/advances-in-applied-probability
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

MSC classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 50 *
Loading metrics...

Abstract views

Total abstract views: 85 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 17th August 2018. This data will be updated every 24 hours.