Skip to main content
×
×
Home

The intrinsic random functions and their applications

  • G. Matheron (a1)
Abstract

The intrinsic random functions (IRF) are a particular case of the Guelfand generalized processes with stationary increments. They constitute a much wider class than the stationary RF, and are used in practical applications for representing non-stationary phenomena. The most important topics are: existence of a generalized covariance (GC) for which statistical inference is possible from a unique realization; theory of the best linear intrinsic estimator (BLIE) used for contouring and estimating problems; the turning bands method for simulating IRF; and the models with polynomial GC, for which statistical inference may be performed by automatic procedures.

Copyright
References
Hide All
[1] Cramer, H. and Leadbetter, M. R. (1969) Stationary and Related Stochastic Processes. Wiley, New York.
[2] Feller, W. (1957) An Introduction to Probability Theory and its Applications. Vol. 1. Wiley, New York.
[3] Guelfand, M. and Vilenkin, N. Y. (1961) Nekotorye primenenia garmonitsheskovo analisa. Moscow.
[4] Guelfand, M. and Vilenkin, N. Y. (1967) Les Distributions. Vol. 4. Dunod, Paris.
[5] Grenander, U. and Rosenblatt, M. (1957) Stationary Time Series. Wiley, New York.
[6] Guibal, D. (1972) Simulations de schémas intrinsèques. Internal report, Centre de Morphologie Mathématique, Fontainebleau.
[7] Huijbregts, Ch. and Matheron, G. (1970) Universal Kriging — an optimal method for estimating and contouring in trend surface analysis. CIMM International Symposium, Montreal.
[8] Matheron, G. (1969) Le Krigeage Universel. Fasc. No. 1, Cahiers du Centre de Morphologie Mathématique, Fontainebleau.
[9] Matheron, G. (1971) The theory of regionalized variables, and its applications. Fasc. No. 5, Cahiers du Centre de Morphologie Mathématique, Fontainebleau.
[10] Orfeuil, J. P. (1972) Simulation du Wiener-Lévy et de ses intégrales. Internal report, Centre de Morphologie Mathématique, Fontainebleau.
[11] Yaglom, A. M. (1962) Stationary Random Functions. Prentice Hall, Englewood Cliffs, N. J.
[12] Wiener, N. and Masani, P. (1958) The prediction theory for multivariate stochastic processes. I. Acta Math. 98, 111150; II. Acta Math. 99, 93–137.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Advances in Applied Probability
  • ISSN: 0001-8678
  • EISSN: 1475-6064
  • URL: /core/journals/advances-in-applied-probability
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 14 *
Loading metrics...

Abstract views

Total abstract views: 665 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 24th June 2018. This data will be updated every 24 hours.