[1]
Adams, S., Collevecchio, A. and König, W. (2011). A variational formula for the free energy of an interacting many-particle system. Ann. Prob.
39, 683–728.
[2]
Asmussen, S. and Glynn, P. W. (2007). Stochastic Simulation: Algorithms and Analysis. Springer, New York.
[3]
Baccelli, F. and Błaszczyszyn, B. (2009). Stochastic geometry and wireless networks, Vol. 1, Theory. Foundations Trends Networking
3, 249–449.
[4]
Baccelli, F. and Błaszczyszyn, B. (2009). Stochastic geometry and wireless networks, Vol. 2, Applications. Foundations Trends Networking
4, 1–312.
[5]
Baccelli, F. and Zhang, X. (2015). A correlated shadowing model for urban wireless networks. In 2015 IEEE Conference of Computer Communications (INFOCOM), IEEE, New York, pp. 801–809.
[6]
Baldi, P., Frigessi, A. and Piccioni, M. (1993). Importance sampling for Gibbs random fields. Ann. Appl. Prob.
3, 914–933.
[7]
Bangerter, B., Talwar, S., Arefi, R. and Stewart, K. (2014). Networks and devices for the 5G era. IEEE Commun. Magazine
52, 90–96.
[8]
Boucheron, S., Lugosi, G. and Massart, P. (2013). Concentration Inequalities, Oxford University Press.
[9]
Daly, D. J. and Vere-Jones, D. (2003). An Introduction to the Theory of Point Processes, Vol. I, 2nd edn. Springer, New York.
[10]
Dembo, A. and Zeitouni, O. (1998). Large Deviations Techniques and Applications, 2nd edn. Springer, New York.
[11]
Eichelsbacher, P. and Schmock, U. (1998). Exponential approximations in completely regular topological spaces and extensions of Sanov's theorem. Stoch. Process. Appl.
77, 233–251.
[12]
Ganesh, A. J. and Torrisi, G. L. (2008). Large deviations of the interference in a wireless communication model. IEEE Trans. Inf. Theory
54, 3505–3517.
[13]
Georgii, H.-O. (1993). Large deviations and maximum entropy principle for interacting random fields on
Z
d
. Ann. Prob.
21, 1845–1875.
[14]
Georgii, H.-O. (1994). Large deviations and the equivalence of ensembles for Gibbsian particle systems with superstable interaction. Prob. Theory Relat. Fields
99, 171–195.
[15]
Georgii, H.-O. (2011). Gibbs Measures and Phase Transitions, 2nd edn. De~Gruyter, Berlin.
[16]
Georgii, H.-O. and Zessin, H. (1993). Large deviations and the maximum entropy principle for marked point random fields. Prob. Theory Relat. Fields
96, 177–204.
[18]
Kallenberg, O. (2002). Foundations of Modern Probability, 2nd edn. Springer, New York.
[19]
Kroese, D. P., Taimre, T. and Botev, Z. I. (2011). Handbook of Monte Carlo Methods. John Wiley, Hoboken, NJ.
[20]
Mecke, J. (1967). Stationäre zufällige Masse auf lokalkompakten Abelschen Gruppen. Z. Wahrscheinlichkeitsth.
9
36–58.
[21]
Penrose, M. (2003). Random Geometric Graphs. Oxford University Press.
[22]
Schreiber, T. and Yukich, J. E. (2005). Large deviations for functionals of spatial point processes with applications to random packing and spatial graphs. Stoch. Process. Appl.
115, 1332–1356.
[23]
Seppäläinen, T. and Yukich, J. E. (2001). Large deviation principles for Euclidean functionals and other nearly additive processes. Prob. Theory Relat. Fields
120, 309–345.
[24]
Torrisi, G. L. and Leonardi, E. (2013). Simulating the tail of the interference in a Poisson network model. IEEE Trans. Inf. Theory
59, 1773–1787.
[25]
Torrisi, G. L. and Leonardi, E. (2014). Large deviations of the interference in the Ginibre network model. Stoch. Systems
4, 173–205.