Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-30T06:14:07.279Z Has data issue: false hasContentIssue false

Max-linear graphical models with heavy-tailed factors on trees of transitive tournaments

Published online by Cambridge University Press:  15 December 2023

Stefka Asenova*
Affiliation:
UCLouvain
Johan Segers*
Affiliation:
UCLouvain
*
*Postal address: LIDAM/ISBA, Voie du Roman Pays 20, 1348 Louvain-la-Neuve, Belgium.
*Postal address: LIDAM/ISBA, Voie du Roman Pays 20, 1348 Louvain-la-Neuve, Belgium.

Abstract

Graphical models with heavy-tailed factors can be used to model extremal dependence or causality between extreme events. In a Bayesian network, variables are recursively defined in terms of their parents according to a directed acyclic graph (DAG). We focus on max-linear graphical models with respect to a special type of graph, which we call a tree of transitive tournaments. The latter is a block graph combining in a tree-like structure a finite number of transitive tournaments, each of which is a DAG in which every two nodes are connected. We study the limit of the joint tails of the max-linear model conditionally on the event that a given variable exceeds a high threshold. Under a suitable condition, the limiting distribution involves the factorization into independent increments along the shortest trail between two variables, thereby imitating the behaviour of a Markov random field.

We are also interested in the identifiability of the model parameters in the case when some variables are latent and only a subvector is observed. It turns out that the parameters are identifiable under a criterion on the nodes carrying the latent variables which is easy and quick to check.

Type
Original Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of Applied Probability Trust

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Améndola, C., Hollering, B., Sullivant, S. and Tran, N. (2021). Markov equivalence of max-linear Bayesian networks. In Proceedings of the Thirty-Seventh Conference on Uncertainty in Artificial Intelligence (Proceedings of Machine Learning Research 161), eds de Campos, C. and Maathuis, M. H., Research Press, ML, pp. 1746–1755.Google Scholar
Améndola, C., Klüppelberg, C., Lauritzen, S. and Tran, N. M. (2022). Conditional independence in max-linear Bayesian networks. Ann. Appl. Prob. 32, 145.CrossRefGoogle Scholar
Asadi, P., Davison, A. C. and Engelke, S. (2015). Extremes on river networks. Ann. Appl. Statist. 9, 20232050.CrossRefGoogle Scholar
Asenova, S., Mazo, G. and Segers, J. (2021). Inference on extremal dependence in the domain of attraction of a structured Hüsler–Reiss distribution motivated by a Markov tree with latent variables. Extremes 24, 461500.CrossRefGoogle Scholar
Asenova, S. and Segers, J. (2023). Extremes of Markov random fields on block graphs: max-stable limits and structured Hüsler–Reiss distributions. Extremes 26, 433468.CrossRefGoogle Scholar
Behtoei, A., Jannesari, M. and Taeri, B. (2010). A characterization of block graphs. Discrete Appl. Math. 158, 219221.CrossRefGoogle Scholar
Beirlant, J., Goegebeur, Y., Segers, J. and Teugels, J. L. (2004). Statistics of Extremes: Theory and Applications. John Wiley, Hoboken, NJ.CrossRefGoogle Scholar
Buck, J. and Klüppelberg, C. (2021). Recursive max-linear models with propagating noise. Electron. J. Statist. 15, 47704822.CrossRefGoogle Scholar
De Haan, L. and Ferreira, A. (2007). Extreme Value Theory: An Introduction. Springer, New York.Google Scholar
Einmahl, J. H. J., Krajina, A. and Segers, J. (2012). An M-estimator for tail dependence in arbitrary dimensions. Ann. Statist. 40, 17641793.CrossRefGoogle Scholar
Engelke, S. and Hitz, A. S. (2020). Graphical models for extremes. J. R. Statist. Soc. B [Statist. Methodology] 82, 871932.CrossRefGoogle Scholar
Engelke, S. and Volgushev, S. (2022). Structure learning for extremal tree models. J. R. Statist. Soc. B [Statist. Methodology] 84, 20552087.CrossRefGoogle Scholar
Gissibl, N. and Klüppelberg, C. (2018). Max-linear models on directed acyclic graphs. Bernoulli 24, 26932720.CrossRefGoogle Scholar
Gissibl, N., Klüppelberg, C. and Lauritzen, S. (2021). Identifiability and estimation of recursive max-linear models. Scand. J. Statist. 48, 188211.CrossRefGoogle Scholar
Gissibl, N., Klüppelberg, C. and Otto, M. (2018). Tail dependence of recursive max-linear models with regularly varying noise variables. Econometrics Statist. 6, 149167.CrossRefGoogle Scholar
Gnecco, N., Meinshausen, N., Peters, J. and Engelke, S. (2021). Causal discovery in heavy-tailed models. Ann. Statist. 49, 17551778.CrossRefGoogle Scholar
Harary, F. (1963). A characterization of block-graphs. Canad. Math. Bull. 6, 16.CrossRefGoogle Scholar
Harary, F. and Moser, L. (1966). The theory of round robin tournaments. Amer. Math. Monthly 73, 231246.CrossRefGoogle Scholar
Hu, S., Peng, Z. and Segers, J. (2022). Modelling multivariate extreme value distributions via Markov trees. To appear in Scand. J. Statist.Google Scholar
Janssen, A. and Segers, J. (2014). Markov tail chains. J. Appl. Prob. 51, 11331153.CrossRefGoogle Scholar
Klüppelberg, C. and Krali, M. (2021). Estimating an extreme Bayesian network via scalings. J. Multivariate Anal. 181, 10461072.CrossRefGoogle Scholar
Klüppelberg, C. and Lauritzen, S. (2019). Bayesian networks for max-linear models. In Network Science, Springer, Cham, pp. 7997.CrossRefGoogle Scholar
Koller, D. and Friedman, N. (2009). Probabilistic Graphical Models: Principles and Techniques. MIT Press.Google Scholar
Kulpa, W. (1998). Poincaré and domain invariance theorem. Acta Univ. Carolin. Math. Phys. 39, 127136.Google Scholar
Lauritzen, S. L. (1996). Graphical Models. Oxford University Press.CrossRefGoogle Scholar
Le, V. B. and Tuy, N. N. (2010). The square of a block graph. Discrete Math. 310, 734741.CrossRefGoogle Scholar
Resnick, S. (1987). Extreme Values, Regular Variation, and Point Processes. Springer, New York.CrossRefGoogle Scholar
Resnick, S. I. and Zeber, D. (2013). Asymptotics of Markov kernels and the tail chain. Adv. Appl. Prob. 45, 186213.CrossRefGoogle Scholar
Segers, J. (2007). Multivariate regular variation of heavy-tailed Markov chains. Preprint. Available at https://arxiv.org/abs/math/0701411v1.Google Scholar
Segers, J. (2020). Discussion on the paper by Engelke and Hitz (comment). J. R. Statist. Soc. B [Statist. Methodology] 82, 926.Google Scholar
Segers, J. (2020). One- versus multi-component regular variation and extremes of Markov trees. Adv. Appl. Prob. 52, 855878.CrossRefGoogle Scholar
Smith, R. L. (1992). The extremal index for a Markov chain. J. Appl. Prob. 29, 3745.CrossRefGoogle Scholar
Tran, N. M., Buck, J. and Klüppelberg, C. (2021). Causal discovery of a river network from its extremes. Preprint. Available at https://arxiv.org/abs/2102.06197v2.Google Scholar
Tran, N. M., Buck, J. and Klüppelberg, C. (2021). Estimating a latent tree for extremes. Preprint. Available at https://arxiv.org/abs/2102.06197v2.Google Scholar
Wright, S. (1934). The method of path coefficients. Ann. Math. Statist. 5, 161215.CrossRefGoogle Scholar
Yun, S. (1998). The extremal index of a higher-order stationary Markov chain. Ann. Appl. Prob. 8, 408437.CrossRefGoogle Scholar