Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-28T04:23:49.353Z Has data issue: false hasContentIssue false

Multidimensional random motions with a natural number of finite velocities

Published online by Cambridge University Press:  22 March 2024

Fabrizio Cinque*
Affiliation:
Sapienza University of Rome
Mattia Cintoli*
Affiliation:
Sapienza University of Rome
*
*Postal address: Department of Statistical Sciences, Sapienza University of Rome, Italy.
*Postal address: Department of Statistical Sciences, Sapienza University of Rome, Italy.

Abstract

We present a detailed analysis of random motions moving in higher spaces with a natural number of velocities. In the case of the so-called minimal random dynamics, under some broad assumptions, we give the joint distribution of the position of the motion (for both the inner part and the boundary of the support) and the number of displacements performed with each velocity. Explicit results for cyclic and complete motions are derived. We establish useful relationships between motions moving in different spaces, and we derive the form of the distribution of the movements in arbitrary dimension. Finally, we investigate further properties for stochastic motions governed by non-homogeneous Poisson processes.

Type
Original Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of Applied Probability Trust

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Beghin, L., Nieddu, L. and Orsingher, E. (2001). Probabilistic analysis of the telegrapher’s process with drift by means of relativistic transformations. J. Appl. Math. Stoch. Anal. 14, 1125.CrossRefGoogle Scholar
Cinque, F. (2022). A note on the conditional probabilities of the telegraph process. Statist. Prob. Lett. 185, article no. 109431.CrossRefGoogle Scholar
Cinque, F. (2023). Reflection principle for finite-velocity random motions. J. Appl. Prob. 60, 479492.CrossRefGoogle Scholar
Cinque, F. and Orsingher, E. (2023). Stochastic dynamics of generalized planar random motions with orthogonal directions. J. Theoret. Prob. 36, 22292261.CrossRefGoogle Scholar
Cinque, F. and Orsingher, E. (2023). Random motions in $\mathbb{R}^3$ with orthogonal directions. Stoch. Process. Appl. 161, 173200.CrossRefGoogle Scholar
Davis, B. H. A. (1984). Piecewise-deterministic Markov processes: a general class of non-diffusion stochastic models. J. R. Statist. Soc. B [Statist. Methodology] 46, 353388.Google Scholar
De Gregorio, A. (2010). Stochastic velocity motions and processes with random time. Adv. Appl. Prob. 42, 10281056.CrossRefGoogle Scholar
Di Crescenzo, A. (2002). Exact transient analysis of a planar motion with three directions. Stoch. Stoch. Reports 72, 175189.CrossRefGoogle Scholar
Di Crescenzo, A., Iuliano, A., Martinucci, B. and Zacks, S. (2013). Generalized telegraph process with random jumps. J. Appl. Prob. 50, 450463.CrossRefGoogle Scholar
Di Crescenzo, A., Iuliano, A. and Mustaro, V. (2023). On some finite-velocity random motions driven by the geometric counting process. J. Statist. Phys. 190, article no. 44.CrossRefGoogle Scholar
Garra, R. and Orsingher, E. (2016). Random flights related to the Euler–Poisson–Darboux equation. Markov Process. Relat. Fields 22, 87110.Google Scholar
Goldstein, S. (1951), On diffusion by discontinuous movements and the telegraph equation. Quart. J. Mech. Appl. Math. 4, 129156.CrossRefGoogle Scholar
Grandell, J. (1997). Mixed Poisson Processes. CRC Press, Boca Raton.CrossRefGoogle Scholar
Iacus, S. M. (2001). Parametric estimation for the standard and geometric telegraph process observed at discrete times. Statist. Infer. Stoch. Process. 11, 249263.Google Scholar
Iuliano, A. and Verasani, G. (2023). A three-dimensional cyclic random motion with finite velocities driven by geometric counting processes. Preprint. Available at https://arxiv.org/abs/2306.03260.Google Scholar
Kac, M. (1974). A stochastic model related to the telegrapher’s equation. Rocky Mountain J. Math. 4, 497509.CrossRefGoogle Scholar
Kolesnik, A. D. (2021). Markov Random Flights. CRC Press, Boca Raton.CrossRefGoogle Scholar
Kolesnik, A. D. and Orsingher, E. (2005). A planar random motion with an infinite number of directions controlled by the damped wave equation. J. Appl. Prob. 42, 11681182.CrossRefGoogle Scholar
Kolesnik, A. D. and Ratanov, N. (2013). Telegraph Processes and Option Pricing. Springer, Heidelberg.CrossRefGoogle Scholar
Kolesnik, A. D. and Turbin, A. F. (1998). The equation of symmetric Markovian random evolution in a plane. Stoch. Process. Appl. 75, 6787.CrossRefGoogle Scholar
Lachal, A. (2006). Cyclic random motions in $\mathbb {R}^d$ -space with n directions. ESAIM Prob. Statist. 10, 277316.CrossRefGoogle Scholar
Lachal, A., Leorato, S. and Orsingher, E. (2006). Minimal cyclic random motion in ${R}^{n}$ and hyper-Bessel functions. Ann. Inst. H. Poincaré Prob. Statist. 42, 753772.CrossRefGoogle Scholar
Leorato, S. and Orsingher, E. (2004). Bose–Einstein-type statistics, order statistics and planar random motions with three directions. Adv. Appl. Prob. 36, 937–970.CrossRefGoogle Scholar
Masoliver, J. and Lindenberg, K. (2020). Two-dimensional telegraphic processes and their fractional generalizations. Phys. Rev. E 101, article no. 012137.CrossRefGoogle ScholarPubMed
Mertens, K., Angelani, L., Di Leonardo, R. and Bocquet, L. (2012). Probability distributions for the run-and-tumble bacterial dynamics: an analogy to the Lorentz model. Europ. Phys. J. E 35, article no. 84.CrossRefGoogle Scholar
Mori, F., Le Doussal, P., Majumdar, S. N. and Schehr, G. (2020). Universal properties of a run-and-tumble particle in arbitrary dimension. Phys. Rev. E 102, article no. 042133.CrossRefGoogle ScholarPubMed
Orsingher, E. (1990). Probability law, flow function, maximum distribution of wave-governed random motions and their connections with Kirchoff’s laws. Stoch. Process. Appl. 34, 4966.CrossRefGoogle Scholar
Orsingher, E. (2002). Bessel functions of third order and the distribution of cyclic planar random motion with three directions. Stoch. Stoch. Reports 74, 617631.CrossRefGoogle Scholar
Orsingher, E. and De Gregorio, A. (2007). Random flights in higher spaces. J. Theoret. Prob. 20, 769806.CrossRefGoogle Scholar
Orsingher, E., Garra, R. and Zeifman, A. I. (2020). Cyclic random motions with orthogonal directions. Markov Process. Relat. Fields 26, 381402.Google Scholar
Orsingher, E. and Kolesnik, A. D. (1996). Exact distribution for a planar random motion model, controlled by a fourth-order hyperbolic equation. Theory Prob. Appl. 41, 379386.Google Scholar
Pogorui, A. (2012). Evolution in multidimensional spaces. Random Oper. Stoch. Equ. 20, 119126.CrossRefGoogle Scholar
Samoilenko, V. (2001). Markovian evolutions in $\mathbb {R}^n$ . Random Operators Stoch. Equat. 9, 139160.Google Scholar
Santra, I., Basu, U. and Sabhapandit, S. (2020). Run-and-tumble particles in two dimensions: marginal position distributions. Phys. Rev. E 101, article no. 062120.CrossRefGoogle ScholarPubMed
Travaglino, F., Di Crescenzo, A., Martinucci, B. and Scarpa, R. (2018). A new model of Campi Flegrei inflation and deflation episodes based on Brownian motion driven by the telegraph process. Math. Geosci. 50, 961975.CrossRefGoogle Scholar