Skip to main content Accessibility help

The Multivariate Ginar(p) Process

  • Alain Latour (a1)

A criterion is given for the existence of a stationary and causal multivariate integer-valued autoregressive process, MGINAR(p). The autocovariance function of this process being identical to the autocovariance function of a standard Gaussian MAR(p), we deduce that the MGINAR(p) process is nothing but a MAR(p) process. Consequently, the spectral density is directly found and gives good insight into the stochastic structure of a MGINAR(p). The estimation of parameters of the model, as well as the forecasting of the series, is discussed.

Corresponding author
Postal address: Université du Québec à Montréal, Département de mathématiques, Case postale 8888, succursale Centre-Ville, Montréal, Québec, H3C 3P8, Canada.
Hide All

Research supported by the Natural Sciences and Engineering Research Council of Canada (NSERCC).

Hide All
Al-Osh, M. A. and Aly, E. E. (1992) First-order autoregressive time series with negative binomial and geometric marginals. Commun. Statist. Theory Meth. 21, 24832492.
Al-Osh, M. A. and Alzaid, A. A. (1987) First-order integer-valued autoregressive (INAR(l)) process. J. Time Series Anal. 8, 261275.
Al-Osh, M. A. and Alzaid, A. A. (1988) Integer-valued moving average (INMA) process. Stat. Hefte 29, 281300.
Al-Osh, M. A. and Alzaid, A. A. (1991). Binomial autoregressive moving average models. Commun. Statist. Stoch. Models 7, 261282.
Alzaid, A. A. and Al-Osh, M. A. (1990) An integer-valued pth order autoregressive structure (INAR(p)) process. J. Appl. Prob. 27, 314324.
Billingsley, P. (1968) Convergence of Probability Measures. Wiley, New York.
Brockwell, P. J. and Davis, R. A. (1991) Time Series: Theory and Methods. 2nd edn. Springer, New York.
Dion, J.-P., Gauthier, G. and Latour, A. (1995) Branching processes with immigration and integer-valued time series. Serdica Math. J. 21, 123136.
Du, J.-G. and Li, Y. (1991) The integer-valued autoregressive (INAR(p)) model. J. Time Series Anal. 12, 129142.
Gauthier, G. (1991) Modèles de type autorégressif pour les séries chronologiques à valeurs entières non négatives. Mémoire de maîtrise. Univ. du Québec à Montréal.
Gauthier, G. and Latour, A. (1994) Convergence forte des estimateurs des paramètres d'un processus GENAR(p). Ann. Sc. Math. Québec 18, 3759.
Graybill, F. A. (1983) Matrices with Applications in Statistics. Wadsworth, Belmont, CA.
Hannan, E. J. (1970) Multiple Time Series. Wiley, New York.
Heyde, C. C. and Seneta, E. (1972) Estimation theory for growth and immigration rates in a multiplicative process. J. Appl. Prob. 9, 235256.
Jacobs, P. A. and Lewis, P. A. W. (1978a) Discrete time series generated by mixture I: correlational and runs properties J. R. Statist. Soc. B 40, 94105.
Jacobs, P. A. and Lewis, P. A. W. (1978b) Discrete time series generated by mixture II: asymptotic properties. J. R. Statist. Soc. B 40, 222228.
Jacobs, P. A. and Lewis, P. A. W. (1978c) Discrete time series generated by mixture III: autoregressive processes (DAR(p)). Tech. report no NPS55-78-022. Naval Postgraduate School, Monterey, CA.
Jacobs, P. A. and Lewis, P. A. W. (1983) Stationary discrete autoregressive-moving average time series generated by mixtures. J. Time Series Anal. 4, 1936.
Klimko, L. A. and Nelson, P. I. (1978) On conditional least squares estimation for stochastic processes. Ann. Statist. 6, 629642.
Latour, A. (1994) Existence and stochastic structure of a non-negative integer-valued autoregressive process. Tech. report no 212. Université du Québec à Montréal.
Lewis, P. A. W. (1980) Simple models for positive-valued and discrete-valued time series with ARMA correlation structure. In Multivariate Analysis. ed. Krishnaiah, V. P. R.. North Holland, Amsterdam. pp. 151166.
Lütkepohl, H. (1991) Introduction to Multiple Time Series Analysis. Springer, New York.
Mckenzie, E. (1981) Extending the correlation structure of exponential autoregressive-moving-average processes. J. Appl. Prob. 18, 181189.
Mckenzie, E. (1985) Some simple models for discrete variate time series. Water Res. Bullet. 21, 645650.
Mckenzie, E. (1986) Autoregressive moving average processes with negative binomial and geometric marginal distributions. Adv. Appl. Prob. 18, 679705.
Mckenzie, E. (1988a) Some ARMA models for dependent sequences of Poisson counts. Adv. Appl. Prob. 20, 822835.
Mckenzie, E. (1988b) The distributional structure of finite moving-average processes. J. Appl. Prob. 25, 313321.
Priestley, M. B. (1981) Spectral Analysis and Time Series. Academic Press, New York.
Reinsel, G. C. (1993) Elements of Multivariate Time Series Analysis. Springer, New York.
Seneta, E. (1981) Non-Negative Matrices and Markov Chains. Springer, New York.
Steutel, F. W. and Van Harn, K. (1979) Discrete analogues of self-decomposability and stability. Ann. Prob. 7, 893899.
Wang, Z.-K. (1982) Stochastic Processes. Scientific Press, Beijing.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Advances in Applied Probability
  • ISSN: 0001-8678
  • EISSN: 1475-6064
  • URL: /core/journals/advances-in-applied-probability
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


MSC classification


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed