Alanyali, M. and Hajek, B. (1998). Analysis of simple algorithms for dynamic load balancing. Math. Operat. Res.
22, 840–871.

Altman, E., Koole, G. and Jiménez, T. (2001). On the comparison of queueing systems with their fluid limits. Preprint. Prob. Eng. Inf. Sci. 15, 165–178.

Asmussen, S. (1987). Applied Probability and Queues. John Wiley, Chichester.

Atkins, D. and Chen, H. (1995). Performance evaluation of scheduling control of queueing networks: fluid model heuristics. Queueing Systems
21, 391–413.

Avram, F., Bertsimas, D. and Ricard, M. (1995). Fluid models of sequencing problems in open queueing networks: an optimal control approach. In Stochastic Networks (*IMA Vol. Math. Appl.* 71), eds Kelly, F. P. and Williams, R. J., Springer, New York, pp. 199–234.

Bäuerle, N., (1999). How to improve the performance of ATM multiplexers. Operat. Res. Lett.
24, 81–89.

Bäuerle, N., (2000). Asymptotic optimality of tracking-policies in stochastic networks. Ann. Appl. Prob.
10, 1065–1083.

Bäuerle, N., (2001). Discounted stochastic fluid programs. To appear in Math. Operat. Res. 26, 401–420.

Bäuerle, N. and Rieder, U. (2000). Optimal control of single-server fluid networks. Queueing Systems
35, 185–200.

Chen, H. (1995). Fluid approximations and stability of multiclass queueing networks: work-conserving disciplines. Ann. Appl. Prob.
5, 637–665.

Chen, H. and Xu, S. (1993). On the asymptote of the optimal routing policy for two service stations. IEEE Trans. Automatic Control
38, 187–189.

Dai, J. G. (1995). On positive Harris recurrence of multiclass queueing networks: a unified approach via fluid limit models. Ann. Appl. Prob.
5, 49–77.

Dai, J. G. (1999). Stability of Fluid and Stochastic Processing Networks (MaPhySto Miscellanea 9). Centre for Mathematical Physics and Stochastics, Aarhus.

Dai, J. G. and Williams, R. J. (1995). Existence and uniqueness of semimartingale reflecting Brownian motions in convex polyhedrons. Theory Prob. Appl.
40, 1–40.

Gajrat, A. and Hordijk, A. (2000a). Fluid approximation of a controlled multiclass tandem network. Preprint. Queueing Systems
35, 349–380.

Gajrat, A. and Hordijk, A. (2000b). Optimal service control of multiclass fluid tandem networks. Preprint, Leiden University.

Gajrat, A. and Hordijk, A. (2000c). Synthesis of the optimal control problem for fluid networks. Preprint, Leiden University.

Hajek, B. (1984). Optimal control of two interacting service stations. IEEE Trans. Automatic Control
29, 491–499.

Harrison, J. M. (1996). The BIGSTEP approach to flow management in stochastic processing networks. In Stochastic Networks: Stochastic Control Theory and Applications (*R. Statist. Soc. Lecture Notes* 4), eds Kelly, F., Zachary, S. and Ziedins, I., Clarendon Press, Oxford, pp. 57–90.

Hordijk, A. and Koole, G. (1992). On the assignment of customers to parallel queues. Prob. Eng. Inf. Sci.
6, 495–511.

Kitaev, M. and Rykov, V. (1995). Controlled Queueing Systems. CRC Press, Boca Raton, FL.

Luo, X. and Bertsimas, D. (1998). A new algorithm for state-constrained separated continuous linear programs. SIAM J. Control Optimization
37, 177–210.

Maglaras, C. (1999). Dynamic scheduling in multiclass queueing networks: stability under discrete-review policies. Queueing Systems
31, 171–206.

Maglaras, C. (2000). Discrete-review policies for scheduling stochastic networks: trajectory tracking and fluid-scale asymptotic optimality. Preprint. Ann. Appl. Prob. 10, 897–929.

Meyn, S. P. (1997a). The policy iteration algorithm for average reward Markov decision processes with general state space. IEEE Trans. Automatic Control
42, 1663–1679.

Meyn, S. P. (1997b). Stability and optimization of queueing networks and their fluid models. In Mathematics of Stochastic Manufacturing Systems (*Lectures Appl. Math.* 33), eds Yin, G. G. and Zhang, Q., American Mathematical Society, Providence, RI, pp. 175–199.

Meyn, S. P. (2001). Sequencing and routing in multiclass queueing networks I: Feedback regulation. Preprint. SIAM J. Control Optimization
40, 741–776.

Ott, T. J. and Shanthikumar, J. G. (1996). Discrete storage processes and their Poisson flow and fluid flow approximations. Queueing Systems
24, 101–136.

Pullan, M. C. (1995). Forms of optimal solutions for separated continuous linear programs. SIAM J. Control Optimization
33, 1952–1977.

Seierstad, A. and Sydsæter, K. (1987). Optimal Control Theory with Economic Applications. North-Holland, Amsterdam.

Sennott, L. I. (1989). Average cost optimal stationary policies in infinite state Markov decision processes with unbounded costs. Operat. Res.
37, 626–633.

Sennott, L. I. (1998). Stochastic Dynamic Programming and the Control of Queues. John Wiley, New York.

Sethi, S. P. and Zhang, Q. (1994). Hierarchical Decision Making in Stochastic Manufacturing Systems. Birkhäuser, Boston, MA.

Stidham, S. and Weber, R. (1993). A survey of Markov decision models for control of networks of queues. Queueing Systems
13, 291–314.

Veatch, M. (2001). Fluid analysis of arrival routing. Preprint. IEEE Trans. Automat. Control
46, 1254–1257.

Weiss, G. (1996). Optimal draining of fluid re-entrant lines: some solved examples. In Stochastic Networks: Stochastic Control Theory and Applications (*R. Statist. Soc. Lecture Notes* 4), eds Kelly, F., Zachary, S. and Ziedins, I., Clarendon Press, Oxford, pp. 19–34.

Williams, R. J. (1998). Some recent developments for queueing networks. In Probability Towards 2000 (*Lecture Notes Statist.* 128), eds Accardi, L. and Heyde, C. C., Springer, New York, pp. 340–356.