Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-28T07:35:30.677Z Has data issue: false hasContentIssue false

Optimal scaling of MCMC beyond Metropolis

Published online by Cambridge University Press:  16 December 2022

Sanket Agrawal*
Affiliation:
University of Warwick
Dootika Vats*
Affiliation:
Indian Institute of Technology Kanpur
Krzysztof Łatuszyński*
Affiliation:
Indian Institute of Technology Kanpur
Gareth O. Roberts*
Affiliation:
University of Warwick
*
*Postal address: Coventry CV4 7AL, U.K.
**Email address: dootika@iitk.ac.in
*Postal address: Coventry CV4 7AL, U.K.
*Postal address: Coventry CV4 7AL, U.K.

Abstract

The problem of optimally scaling the proposal distribution in a Markov chain Monte Carlo algorithm is critical to the quality of the generated samples. Much work has gone into obtaining such results for various Metropolis–Hastings (MH) algorithms. Recently, acceptance probabilities other than MH are being employed in problems with intractable target distributions. There are few resources available on tuning the Gaussian proposal distributions for this situation. We obtain optimal scaling results for a general class of acceptance functions, which includes Barker’s and lazy MH. In particular, optimal values for Barker’s algorithm are derived and found to be significantly different from that obtained for the MH algorithm. Our theoretical conclusions are supported by numerical simulations indicating that when the optimal proposal variance is unknown, tuning to the optimal acceptance probability remains an effective strategy.

Type
Original Article
Copyright
© The Author(s), 2022. Published by Cambridge University Press on behalf of Applied Probability Trust

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Banterle, M., Grazian, C., Lee, A. and Robert, C. P. (2019). Accelerating Metropolis–Hastings algorithms by delayed acceptance. Found. Data Sci. 1, 103128.CrossRefGoogle Scholar
Barker, A. A. (1965). Monte Carlo calculations of the radial distribution functions for a proton–electron plasma. Austral. J. Phys. 18, 119134.CrossRefGoogle Scholar
Bédard, M. (2008). Optimal acceptance rates for Metropolis algorithms: moving beyond 0.234. Stoch. Process. Appl. 118, 21982222.CrossRefGoogle Scholar
Billera, L. J. and Diaconis, P. (2001). A geometric interpretation of the Metropolis–Hastings algorithm. Statist. Sci. 335339.Google Scholar
Brooks, S., Gelman, A., Jones, G. and Meng, X.-L. (2011). Handbook of Markov Chain Monte Carlo. CRC Press, Boca Raton.CrossRefGoogle Scholar
Christensen, O. F., Roberts, G. O. and Rosenthal, J. S. (2005). Scaling limits for the transient phase of local Metropolis–Hastings algorithms. J. R. Statist. Soc. B [Statist. Methodology] 67, 253268.CrossRefGoogle Scholar
Delmas, J.-F. and Jourdain, B. (2009). Does waste recycling really improve the multi-proposal Metropolis–Hastings algorithm? An analysis based on control variates. J. Appl. Prob. 46, 938959.CrossRefGoogle Scholar
Doucet, A., Pitt, M. K., Deligiannidis, G. and Kohn, R. (2015). Efficient implementation of Markov chain Monte Carlo when using an unbiased likelihood estimator. Biometrika 102, 295313.CrossRefGoogle Scholar
Duane, S., Kennedy, A. D., Pendleton, B. J. and Roweth, D. (1987). Hybrid Monte Carlo. Phys. Lett. B 195, 216222.CrossRefGoogle Scholar
Ethier, S. N. and Kurtz, T. G. (1986). Markov Processes: Characterization and Convergence. John Wiley, New York.CrossRefGoogle Scholar
Gelman, A., Roberts, G. O. and Gilks, W. R. (1996). Efficient Metropolis jumping rules. Bayesian Statist. 5, 599608.Google Scholar
Gonçalves, F. B., Łatuszyński, K. and Roberts, G. O. (2017). Barker’s algorithm for Bayesian inference with intractable likelihoods. Brazilian J. Prob. Statist. 31, 732745.CrossRefGoogle Scholar
Gonçalves, F. B., Łatuszyński, K. and Roberts, G. O. (2017). Exact Monte Carlo likelihood-based inference for jump-diffusion processes. Preprint. Available at https://arxiv.org/abs/1707.00332.Google Scholar
Hastings, W. K. (1970). Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57, 97109.CrossRefGoogle Scholar
Herbei, R. and Berliner, L. M. (2014). Estimating ocean circulation: an MCMC approach with approximated likelihoods via the Bernoulli factory. J. Amer. Statist. Assoc. 109, 944954.CrossRefGoogle Scholar
Jourdain, B., Lelièvre, T. and Miasojedow, B. (2014). Optimal scaling for the transient phase of Metropolis Hastings algorithms: the longtime behavior. Bernoulli 20, 19301978.CrossRefGoogle Scholar
Kuntz, J., Ottobre, M. and Stuart, A. M. (2019). Diffusion limit for the random walk Metropolis algorithm out of stationarity. Ann. Inst. H. Poincaré Prob. Statist. 55, 15991648.CrossRefGoogle Scholar
Łatuszyński, K. and Roberts, G. O. (2013). CLTs and asymptotic variance of time-sampled Markov chains. Methodology Comput. Appl. Prob. 15, 237247.CrossRefGoogle Scholar
Menezes, A. A. and Kabamba, P. T. (2014). Optimal search efficiency of Barker’s algorithm with an exponential fitness function. Optimization Lett. 8, 691703.CrossRefGoogle Scholar
Metropolis, N. et al. (1953). Equation of state calculations by fast computing machines. J. Chem. Phys. 21, 10871092.CrossRefGoogle Scholar
Meyn, S. P. and Tweedie, R. L. (2012). Markov Chains and Stochastic Stability. Cambridge University Press.Google Scholar
Mira, A. (2001). On Metropolis–Hastings algorithms with delayed rejection. Metron 59, 231241.Google Scholar
Morina, G., Łatuszyński, K., Nayar, P. and Wendland, A. (2021). From the Bernoulli factory to a dice enterprise via perfect sampling of Markov chains. To appear in Ann. Appl. Prob. Google Scholar
Neal, P. and Roberts, G. O. (2006). Optimal scaling for partially updating MCMC algorithms. Ann. Appl. Prob. 16, 475515.CrossRefGoogle Scholar
Peskun, P. H. (1973). Optimum Monte-Carlo sampling using Markov chains. Biometrika 60, 607612.CrossRefGoogle Scholar
Robert, C. and Casella, G. (2013). Monte Carlo Statistical Methods. Springer, New York.Google Scholar
Roberts, G. O., Gelman, A. and Gilks, W. R. (1997). Weak convergence and optimal scaling of random walk Metropolis algorithms. Ann. Appl. Prob. 7, 110120.Google Scholar
Roberts, G. O. and Rosenthal, J. S. (1998). Optimal scaling of discrete approximations to Langevin diffusions. J. R. Statist. Soc. B [Statist. Methodology] 60, 255268.CrossRefGoogle Scholar
Roberts, G. O. and Rosenthal, J. S. (2001). Optimal scaling for various Metropolis–Hastings algorithms. Statist. Sci. 16, 351367.CrossRefGoogle Scholar
Roberts, G. O. and Rosenthal, J. S. (2009). Examples of adaptive MCMC. J. Comput. Graph. Statist. 18, 349367.CrossRefGoogle Scholar
Roberts, G. O. and Tweedie, R. L. (1996). Exponential convergence of Langevin distributions and their discrete approximations. Bernoulli 2, 341363.CrossRefGoogle Scholar
Schmon, S. M., Deligiannidis, G., Doucet, A. and Pitt, M. K. (2021). Large-sample asymptotics of the pseudo-marginal method. Biometrika 108, 3751.CrossRefGoogle Scholar
Schmon, S. M. and Gagnon, P. (2022). Optimal scaling of random walk Metropolis algorithms using Bayesian large-sample asymptotics. Statist. Comput. 32, 116.CrossRefGoogle ScholarPubMed
Sherlock, C. and Roberts, G. O. (2009). Optimal scaling of the random walk Metropolis on elliptically symmetric unimodal targets. Bernoulli 15, 774798.CrossRefGoogle Scholar
Sherlock, C., Thiery, A. H. and Golightly, A. (2021). Efficiency of delayed-acceptance random walk Metropolis algorithms. Ann. Statist. 49, 29722990.CrossRefGoogle Scholar
Sherlock, C., Thiery, A. H., Roberts, G. O. and Rosenthal, J. S. (2015). On the efficiency of pseudo-marginal random walk Metropolis algorithms. Ann. Statist. 43, 238275.CrossRefGoogle Scholar
Smith, C. J. (2018). Exact Markov chain Monte Carlo with likelihood approximations for functional linear models. Doctoral Thesis, Ohio State University.Google Scholar
Vats, D., Flegal, J. M. and Jones, G. L. (2019). Multivariate output analysis for Markov chain Monte Carlo. Biometrika 106, 321337.CrossRefGoogle Scholar
Vats, D., Gonçalves, F. B., Łatuszyński, K. and Roberts, G. O. (2022). Efficient Bernoulli factory Markov chain Monte Carlo for intractable posteriors. Biometrika 109, 369385.CrossRefGoogle Scholar
Yang, J., Roberts, G. O. and Rosenthal, J. S. (2020). Optimal scaling of random-walk Metropolis algorithms on general target distributions. Stoch. Process. Appl. 130, 60946132.CrossRefGoogle Scholar
Zanella, G., Bédard, M. and Kendall, W. S. (2017). A Dirichlet form approach to MCMC optimal scaling. Stoch. Process. Appl. 127, 40534082.CrossRefGoogle Scholar