Skip to main content
×
×
Home

Perfect simulation using dominating processes on ordered spaces, with application to locally stable point processes

  • Wilfrid S. Kendall (a1) and Jesper Møller (a2)
Abstract

In this paper we investigate the application of perfect simulation, in particular Coupling from the Past (CFTP), to the simulation of random point processes. We give a general formulation of the method of dominated CFTP and apply it to the problem of perfect simulation of general locally stable point processes as equilibrium distributions of spatial birth-and-death processes. We then investigate discrete-time Metropolis-Hastings samplers for point processes, and show how a variant which samples systematically from cells can be converted into a perfect version. An application is given to the Strauss point process.

Copyright
Corresponding author
Postal address: Department of Statistics, University of Warwick, Coventry CV4 7AL, UK. Email address: wsk@stats.warwick.ac.uk
∗∗ Postal address: Department of Mathematical Sciences, Aalborg University, Fredrik Bajers Vej 7E, DK-9220 Aalborg, Denmark. Email address: jm@math.auc.dk
References
Hide All
[1] Baddeley, A. J. and Möller, J. (1989). Nearest neighbour Markov point processes and random sets. Int. Statist. Rev. 57, 89121.
[2] Baddeley, A. J. and van Lieshout, M. N. M. (1995). Area-interaction point processes. Ann. Inst. Statist. Math. 47, 601619.
[3] Borovkov, A. A. and Foss, S. G. (1992). Stochastically recursive sequences and their generalizations. Siberian Adv. Math. 2, 1681.
[4] Burdzy, K. and Kendall, W. S. (2000). Efficient Markovian couplings: examples and counterexamples. Ann. Appl. Prob. 10, 362409.
[5] Carter, D. S. and Prenter, P. M. (1972). Exponential spaces and counting processes. Z. Wahrscheinlichkeitsth. 21, 119.
[6] Clifford, P. and Nicholls, G. (1994). Comparison of birth-and-death and Metropolis–Hastings Markov chain Monte Carlo for the Strauss process. Available at http://www.math.auckland.ac.nz/simnicholls/.
[7] Corcoran, J. N. and Tweedie, R. L. (1997). Perfect sampling of Harris recurrent Markov chains. Unpublished manuscript.
[8] Darling, R. W. R. (1987). Constructing Nonhomeomorphic Stochastic Flows. Mem. Amer. Math. Soc. 70, No. 376.
[9] Fernández, R., Ferrari, P. A. and Garcia, N. L. (1999). Perfect simulation for interacting point processes, loss networks and Ising models. Preprint.
[10] Fill, J. (1998). An interruptible algorithm for exact sampling via Markov chains. Ann. Appl. Prob. 8, 131162.
[11] Foss, S. G. and Tweedie, R. L. (1998). Perfect simulation and backward coupling. Stoch. Models 14, 187203.
[12] Geyer, C. J. (1999). Likelihood inference for spatial point processes. Stochastic Geometry: Likelihood and Computation, eds Barndorff-Nielsen, O. E., Kendall, W. S. and van Lieshout, M. N. M.. Chapman & Hall/CRC, Boca Raton, pp. 79140.
[13] Geyer, C. J. and Möller, J. (1994). Simulation and likelihood inference for spatial point processes. Scand. J. Statist. 21, 359373.
[14] Green, P. J. and Murdoch, D. J. (1999). Exact sampling for Bayesian inference: towards general purpose algorithms. In Bayesian Statistics 6, eds Bernardo, J. M., Berger, J. O., Dawid, A. P. and Smith, A. F. M.. Oxford University Press.
[15] Häggström, O. and Steif, J. E. (1999). Propp–Wilson algorithms and finitary codings for high noise Markov random fields. To appear in Combin. Prob. Comput.
[16] Häggström, O., van Lieshout, M. N. M. and Möller, J. (1999). Characterization results and Markov chain Monte Carlo algorithms including exact simulation for some spatial point processes. Bernoulli 5, 641659.
[17] Kelly, F. P. and Ripley, B. D. (1976). A note on Strauss's model for clustering. Biometrika 63, 357360.
[18] Kendall, W. S. (1997). On some weighted Boolean models. In Advances in Theory and Applications of Random Sets, ed. Jeulin, D.. World Scientific Publishing Company, Singapore, pp. 105120.
[19] Kendall, W. S. (1997). Perfect simulation for spatial point processes. In Proc. ISI 51st session, Istanbul (August 1997), Vol. 3, pp. 163166.
[20] Kendall, W. S. (1998). Perfect simulation for the area-interaction point process. In Probability Towards 2000 eds Accardi, L. and Heyde, C. C.. Springer, New York, pp. 218234.
[21] Kendall, W. S. and Möller, J. (1999). Perfect implementation of a Metropolis–Hastings simulation of Markov point processes. Res. Rept 348, Department of Statistics, University of Warwick.
[22] Kendall, W. S. and Möller, J. (1999). Perfect Metropolis–Hastings simulation of locally stable point processes. Tech. Rept R-99-2001, Department of Mathematical Sciences, Aalborg University, 1999. Available at http://www.statslab.cam.ac.uk/ mcmc/.
[23] Kendall, W. S. and Thönnes, E. (1999). Perfect simulation in stochastic geometry. Pattern Recognition 32, 15691586.
[24] Kendall, W. S., van Lieshout, M. N. M. and Baddeley, A. J. (1999). Quermass-interaction processes: conditions for stability. Adv. Appl. Prob. 31, 315342.
[25] Klein, W. (1982). Potts-model formulation of continuum percolation. Phys. Rev. B, 26, 26772678.
[26] Lund, R. B. and Wilson, D. B. (1997). Exact sampling algorithms for storage systems. In preparation.
[27] Meyn, S. P. and Tweedie, R. L. (1993). Markov Chains and Stochastic Stability. Springer, New York.
[28] Möller, J., (1989). On the rate of convergence of spatial birth-and-death processes. Ann. Inst. Statist. Math. 41, 565581.
[29] Möller, J., (1994). Discussion contribution. Scand. J. Statist. 21, 346349.
[30] Möller, J. (1999). Markov chain Monte Carlo and spatial point processes. In Stochastic Geometry: Likelihood and Computation, eds Barndorff-Nielsen, O. E., Kendall, W. S. and van Lieshout, M. N. M.. Chapman & Hall/CRC, Boca Raton, pp. 141172.
[31] Möller, J. and Nicholls, G. (1999). Perfect simulation for sample-based inference. Tech. Rept R-99-2011, Department of Mathematical Sciences, Aalborg University.
[32] Möller, J. and Schladitz, K. (1999). Extensions of Fill's algorithm for perfect simulation. J. R. Statist. Soc. Ser. B 61, 955969.
[33] Möller, J. and Waagepetersen, R. (1998). Markov connected component fields. Adv. Appl. Prob. 30, 135.
[34] Murdoch, D. J. and Green, P. J. (1998). Exact sampling from a continuous state space. Scand. J. Statist. 25, 483502.
[35] Murdoch, D. J. and Rosenthal, J. S. (2000). Efficient use of exact samples. Statist. Comput. 10, 237243.
[36] Preston, C. J. (1977). Spatial birth-and-death processes. Bull. Inst. Int. Statist. 46, 371391.
[37] Propp, J. G. and Wilson, D. B. (1996). Exact sampling with coupled Markov chains and applications to statistical mechanics. Random Structures and Algorithms 9, 223252.
[38] Ripley, B. D. (1977). Modelling spatial patterns (with discussion). J. R. Statist. Soc. Ser. B 39, 172212.
[39] Ripley, B. D. and Kelly, F. P. (1977). Markov point processes. J. London Math. Soc. 15, 188192.
[40] Strauss, D. J. (1975). A model for clustering. Biometrika 63, 467475.
[41] Thönnes, E., (1999). Perfect simulation of some point processes for the impatient user. Adv. Appl. Prob. 31, 6987.
[42] Van den Berg, J. and Steif, J. E. (1999). On the existence and non-existence of finitary codings for a class of random fields. Ann. Prob. 27, 15011522.
[43] Wilson, D. B. (2000). Layered multishift coupling for use in perfect sampling algorithms (with a primer on CFTP). In Monte Carlo Methods, ed. Madras, N. (Fields Institute Communications 26). AMS, Providence, RI, pp. 141176.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Advances in Applied Probability
  • ISSN: 0001-8678
  • EISSN: 1475-6064
  • URL: /core/journals/advances-in-applied-probability
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

MSC classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed