Skip to main content
×
×
Home

Supporting conceptual design based on the function-behavior-state modeler

  • Yasushi Umeda (a1), Masaki Ishii (a1), Masaharu Yoshioka (a1), Yoshiki Shimomura (a2) and Tetsuo Tomiyama (a1)...
Abstract

The relative significance of conceptual design to basic design or detail design is widely recognized, due to its influential roles in determining the product's fundamental features and development costs. Although there are some general methodologies dealing with functions in design, virtually no commercial CAD systems can support functional design, in particular so-called synthetic phase of design. Supporting the synthetic phase of conceptual design is one of the crucial issues of CAD systems with function modeling capabilities. In this paper, we propose a computer tool called a Function-Behavior-State (FBS) Modeler to support functional design not only in the analytical phase but also in the synthetic phase. To do so, the functional decomposition knowledge and physical features in the knowledge base of the modeler, and a subsystem Qualitative Process Abduction System (QPAS) play crucial roles. Modeling scheme of function in relation with behavior and structure and design process for conceptual design in the FBS Modeler are described. The advantages of the FBS Modeler are demonstrated by presenting two examples; namely, an experiment in which designers used this tool and the design of functionally redundant machines, which is a new design methodology for highly reliable machines, as its application.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Supporting conceptual design based on the function-behavior-state modeler
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Supporting conceptual design based on the function-behavior-state modeler
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Supporting conceptual design based on the function-behavior-state modeler
      Available formats
      ×
Copyright
References
Hide All
Abu-Hanna, A., Benjamins, R., & Jansweijer, W. (1991). Device understanding and modeling for diagnosis. IEEE Expert 6(2), 2632.
Allemang, D., & Liver, B. (1994). A functional representation for design. In Workshop Notes of Reasoning About Function, AAAI-94 Workshop Program, (Hodges, J., Ed.), pp. 919. AAAI, Menlo Park, CA.
Bracewell, R.H., Langdon, P.M., Oh, W.K., Chaplin, R.V., Li, M., Yan, X.T., & Sharpe, J.E.E. (1995). Integrated platform for Al support of complex design—(part I): Rapid development of schemes from first principles. In Preprints of the First IFIP WG 5.2 Workshop: Knowledge Intensive CAD-1, (Tomiyama, T., Mantyla, M. and Finger, S., Eds.), pp. 263281. IFIP.
Bradshaw, J.A., & Young, R.M. (1991). Evaluating design using knowledge of purpose and knowledge of structure. IEEE Expert 6 (2), 3340.
Faltings, B. (1987). Qualitative kinematics in mechanisms. Proc. IJCAI 87, 436442.
Forbus, K. (1984). Qualitative process theory. Artif. Intell. 24(3), 85168.
Franke, D.W. (1991). Deriving and using descriptions of purpose. IEEE Expert 6(2), 4147.
Ireson, W.G. (1966). Reliability handbook. McGraw-Hill, New York.
Ishii, M., Tomiyama, T., & Yoshikawa, H. (1993). A synthetic reasoning method for conceptual design. IFIP World Class Manufacturing '93, pp. 316. Amsterdam, North-Holland.
Iwasaki, Y., Fikes, R., Vescovi, M., & Chandrasekaran, B. (1993). How things are intended to work: Capturing functional knowledge in device design. Proc. IJCAI'93, pp. 15161522.
Keuneke, A.M. (1991). Device representation: The significance of functional knowledge. IEEE Expert 6 (2), 2225.
Miles, L.D. (1972). Techniques of value analysis and engineering. McGraw-Hill, New York.
Pahl, G., & Beitz, W. (1988). Engineering design: A systematic approach. Springer-Verlag, Berlin.
Rodenacker, W. (1971). Methodisches Konstruieren. Springer-Verlag, Berlin.
Shimomura, Y., Takeda, H., Yoshioka, M., Umeda, Y., and Tomiyama, T. (1995). Representation of design object based on the functional evolution process model. In 9th Int. Conf. Design Theory and Methodology— DTM '95, (Ward, A.C., Ed.), pp. 351360. ASME, New York.
Suh, N.P. (1990). The principles of design. Oxford University Press, New York.
Tomiyama, T., Kiriyama, T., & Umeda, Y. (1994). Toward knowledge intensive engineering. In Knowledge Building and Knowledge Sharing, (Fuchi, K. and Yokoi, T., Eds.), pp. 308316. Ohmusha and IOS Press, Tokyo.
Tomiyama, T., Kiriyama, T., & Yoshikawa, H. (1992). Conceptual design of mechanisms: A qualitative physics approach. In Concurrent Engineering: Automation, Tools, and Techniques, (Kusiak, A., Ed.), pp. 131152. John Wiley & Sons, New York.
Ulrich, K.T., & Seering, W.P. (1988). Function sharing in mechanical design. Proc. AAAI-88, pp. 342346.
Umeda, Y., Takeda, H., Tomiyama, T., & Yoshikawa, H. (1990). Function, behaviour, and structure. In Applications of Artificial Intelligence in Engineering, V, (Gero, J.S., Ed.), pp. 177193. Computational Mechanics Publications and Springer-Verlag, Southhampton and Berlin.
Umeda, Y., Tomiyama, T., & Yoshikawa, H. (1992). A design methodology for a self-maintenance machine based on functional redundancy. In Design Theory and Methodology—DTM '92, (Taylor, D.L. and Stauffer, L.A., Eds.), pp. 317324. ASME, New York.
Welch, R.V., & Dixon, J.R. (1992). Representing function, behavior and structure during conceptual design. In Design Theory and Methodology— DTM '92, (Taylor, D.L. and Stauffer, L.A., Eds.), pp. 1118. ASME, New York.
Yoshikawa, H., & Gossard, D., Eds. (1989). Intelligent CAD, I. North-Holland, Amsterdam.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

AI EDAM
  • ISSN: 0890-0604
  • EISSN: 1469-1760
  • URL: /core/journals/ai-edam
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords