Published online by Cambridge University Press: 21 June 2004
We develop a Bayesian procedure for estimation and inference for spatial models of roll call voting. This approach is extremely flexible, applicable to any legislative setting, irrespective of size, the extremism of the legislators' voting histories, or the number of roll calls available for analysis. The model is easily extended to let other sources of information inform the analysis of roll call data, such as the number and nature of the underlying dimensions, the presence of party whipping, the determinants of legislator preferences, and the evolution of the legislative agenda; this is especially helpful since generally it is inappropriate to use estimates of extant methods (usually generated under assumptions of sincere voting) to test models embodying alternate assumptions (e.g., log-rolling, party discipline). A Bayesian approach also provides a coherent framework for estimation and inference with roll call data that eludes extant methods; moreover, via Bayesian simulation methods, it is straightforward to generate uncertainty assessments or hypothesis tests concerning any auxiliary quantity of interest or to formally compare models. In a series of examples we show how our method is easily extended to accommodate theoretically interesting models of legislative behavior. Our goal is to provide a statistical framework for combining the measurement of legislative preferences with tests of models of legislative behavior.
Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.
* Views captured on Cambridge Core between September 2016 - 6th March 2021. This data will be updated every 24 hours.