Skip to main content Accessibility help
×
×
Home

An approach to including protein quality when assessing the net contribution of livestock to human food supply

  • P. Ertl (a1), W. Knaus (a1) and W. Zollitsch (a1)

Abstract

The production of protein from animal sources is often criticized because of the low efficiency of converting plant protein from feeds into protein in the animal products. However, this critique does not consider the fact that large portions of the plant-based proteins fed to animals may be human-inedible and that the quality of animal proteins is usually superior as compared with plant proteins. The aim of the present study was therefore to assess changes in protein quality in the course of the transformation of potentially human-edible plant proteins into animal products via livestock production; data from 30 Austrian dairy farms were used as a case study. A second aim was to develop an approach for combining these changes with quantitative aspects (e.g. with the human-edible feed conversion efficiency (heFCE), defined as kilogram protein in the animal product divided by kilogram potentially human-edible protein in the feeds). Protein quality of potentially human-edible inputs and outputs was assessed using the protein digestibility-corrected amino acid score and the digestible indispensable amino acid score, two methods proposed by the Food and Agriculture Organization of the United Nations to describe the nutritional value of proteins for humans. Depending on the method used, protein scores were between 1.40 and 1.87 times higher for the animal products than for the potentially human-edible plant protein input on a barn-gate level (=protein quality ratio (PQR)). Combining the PQR of 1.87 with the heFCE for the same farms resulted in heFCE×PQR of 2.15. Thus, considering both quantity and quality, the value of the proteins in the animal products for human consumption (in this case in milk and beef) is 2.15 times higher than that of proteins in the potentially human-edible plant protein inputs. The results of this study emphasize the necessity of including protein quality changes resulting from the transformation of plant proteins to animal proteins when evaluating the net contribution of livestock to the human food supply. Furthermore, these differences in protein quality might also need to be considered when choosing a functional unit for the assessment of environmental impacts of the production of different proteins.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      An approach to including protein quality when assessing the net contribution of livestock to human food supply
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      An approach to including protein quality when assessing the net contribution of livestock to human food supply
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      An approach to including protein quality when assessing the net contribution of livestock to human food supply
      Available formats
      ×

Copyright

Corresponding author

References

Hide All
Aiking, H 2011. Future protein supply. Trends in Food Science & Technology 22, 112120.
Boye, J, Wijesinha-Bettoni, R and Burlingame, B 2012. Protein quality evaluation twenty years after the introduction of the protein digestibility corrected amino acid score method. British Journal of Nutrition 108, S183S211.
Cervantes-Pahm, SK, Liu, YH and Stein, HH 2014. Digestible indispensable amino acid score and digestible amino acids in eight cereal grains. British Journal of Nutrition 111, 16631672.
Deglaire, A and Moughan, PJ 2012. Animal models for determining amino acid digestibility in humans – a review. British Journal of Nutrition 108, S273S281.
de Vries, M and de Boer, IJM 2010. Comparing environmental impacts for livestock products: a review of life cycle assessments. Livestock Science 128, 111.
Ertl, P, Klocker, H, Hörtenhuber, S, Knaus, W and Zollitsch, W 2015. The net contribution of dairy production to human food supply: the case of Austrian dairy farms. Agricultural Systems 137, 119125.
FAO 2011. World livestock 2011 – livestock in food security. FAO, Rome, Italy.
FAO 2013. Dietary protein quality evaluation in human nutrition – report of an FAO expert consultation. Food and nutrition paper 51. FAO, Rome, Italy.
FAO and WHO 1991. Protein quality evaluation: report of the joint FAO/WHO expert consultation. Food and nutrition paper 92. FAO, Rome, Italy.
French Association for Animal Production, Ajinomoto Eurolysine, Aventis Animal Nutrition, National Institute of Agricultural Research and Technical Institute for Cereals and Forage 2000. AmiPig, Ileal standardised digestibility of amino acids in feedstuffs for pigs. Retrieved on 27 October 2015 from http://www.feedbase.com/amipig.php?Lang=E.
Ghosh, S, Suri, D and Uauy, R 2012. Assessment of protein adequacy in developing countries: quality matters. British Journal of Nutrition 108, S77S87.
Gilani, GS, Tomé, D, Moughan, PJ and Burlingame, B 2012a. The assessment of amino acid digestibility in foods for humans and including a collation of published ileal amino acid digestibility data for human foods. Retrieved on 27 October 2015 from http://www.fao.org/ag/humannutrition/nutrition/63158/en/.
Gilani, GS, Xiao, CW and Cockell, KA 2012b. Impact of antinutritional factors in food proteins on the digestibility of protein and the bioavailability of amino acids and on protein quality. British Journal of Nutrition 108, S315S332.
Hörtenhuber, S, Kirner, L, Neumayr, C, Quendler, E, Strauss, A, Drapela, T and W Zollitsch, W 2013. Integrative evaluation of ecological, economical and social sustainability aspects in agricultural production systems – the case of dairy production. Retrieved on 30 June 2015 from https://www.dafne.at/dafne_plus_homepage/index.php?section=dafneplus&content=result&come_from=homepage&&project_id=3197.
Klöpffer, W and Grahl, B 2014. Life cycle assessment (LCA): a guide to best practice. Wiley-VCH, Weinheim, Germany.
Leser, S 2013. The 2013 FAO report on dietary protein quality evaluation in human nutrition: recommendations and implications. Nutrition Bulletin 38, 421428.
McGregor, RA and Poppitt, SD 2013. Milk protein for improved metabolic health: a review of the evidence. Nutrition & Metabolism 10, 46.
Millward, DJ 2012. Amino acid scoring patterns for protein quality assessment. British Journal of Nutrition 108, S31S43.
National Institute of Agricultural Research, Agricultural Research for Development, French Association for Animal Production and FAO 2015. Feedipedia – animal feed resources information system. Retrieved on 10 August 2015 from feedipedia.org.
Neumann, C, Harris, DM and Rogers, LM 2002. Contribution of animal source foods in improving diet quality and function in children in the developing world. Nutrition Research 22, 193220.
Nijdam, D, Rood, T and Westhoek, H 2012. The price of protein: review of land use and carbon footprints from life cycle assessments of animal food products and their substitutes. Food Policy 37, 760770.
Pedersen, B and Eggum, BO 1983a. The influence of milling on the nutritive-value of flour from cereal-grains. 1. Rye. Plant Foods for Human Nutrition 32, 185196.
Pedersen, B and Eggum, BO 1983b. The influence of milling on the nutritive-value of flour from cereal-grains. 3. Barley. Plant Foods for Human Nutrition 33, 99112.
Reynolds, LP, Wulster-Radcliffe, M, Aaron, DK and Davis, TA 2015. Importance of animals in agricultural sustainability and food security. The Journal of Nutrition 145, 13771379.
Rutherfurd, SM, Fanning, AC, Miller, BJ and Moughan, PJ 2015. Protein digestibility-corrected amino acid scores and digestible indispensable amino acid scores differentially describe protein quality in growing male rats. The Journal of Nutrition 145, 372379.
Rutherfurd, SM and Moughan, PJ 2012. Available versus digestible dietary amino acids. British Journal of Nutrition 108, S298S305.
Schaafsma, G 2012. Advantages and limitations of the protein digestibility-corrected amino acid score (PDCAAS) as a method for evaluating protein quality in human diets. British Journal of Nutrition 108 (suppl. 2), S333S336.
Smith, J, Sones, K, Grace, D, MacMillan, S, Tarawali, S and Herrero, M 2013. Beyond milk, meat, and eggs: role of livestock in food and nutrition security. Animal Frontiers 3, 613.
Tome, D 2012. Criteria and markers for protein quality assessment – a review. British Journal of Nutrition 108, S222S229.
USDA 2016. National nutrient database for standard reference release 28. Retrieved on 3 February 2016 from http://ndb.nal.usda.gov/ndb/foods.
van Zanten, HHE, Mollenhorst, H, Klootwijk, CW, van Middelaar, CE and de Boer, IJM 2015. Global food supply: land use efficiency of livestock systems. International Journal of Life Cycle Assessment 21, 747758.
WHO, FAO and United Nations University 2007. Protein and amino acid requirements in human nutrition. World Health Organisation technical report series 935. WHO Press, Geneva, Switzerland.
Wilkinson, JM 2011. Re-defining efficiency of feed use by livestock. Animal 5, 10141022.
Wolfe, RR 2015. Update on protein intake: importance of milk proteins for health status of the elderly. Nutrition Reviews 73 (suppl. 1), 4147.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

animal
  • ISSN: 1751-7311
  • EISSN: 1751-732X
  • URL: /core/journals/animal
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed