Skip to main content Accessibility help
×
×
Home

Black soldier fly as dietary protein source for broiler quails: apparent digestibility, excreta microbial load, feed choice, performance, carcass and meat traits

  • M. Cullere (a1), G. Tasoniero (a1), V. Giaccone (a1), R. Miotti-Scapin (a1), E. Claeys (a2), S. De Smet (a2) and A. Dalle Zotte (a1)...
Abstract

In order to expand with validated scientific data the limited knowledge regarding the potential application of insects as innovative feed ingredients for poultry, the present study tested a partial substitution of soya bean meal and soya bean oil with defatted black soldier fly (Hermetia illucens) larvae meal (H) in the diet for growing broiler quails (Coturnix coturnix japonica) on growth performance, mortality, nutrients apparent digestibility, microbiological composition of excreta, feed choice, carcass and meat traits. With this purpose, a total of 450 10-day-old birds were allocated to 15 cages (30 birds/cage) and received three dietary treatments: a Control diet (C) and two diets (H1 and H2) corresponding to 10% and 15% H inclusion levels, respectively (H substituted 28.4% soya bean oil and 16.1% soya bean meal for H1, and 100% soya bean oil and 24.8% soya bean meal for H2, respectively). At 28 days of age, quails were slaughtered, carcasses were weighed, breast muscles were then excised from 50 quails/treatment, weighed, and ultimate pH (pHu) and L*, a*, b* colour values were measured. Breast muscles were then cooked to assess cooking loss and meat toughness. For the digestibility trial, a total of 15 28-day-old quails were assigned to the three feeding groups. The excreta samples were subjected to chemical and microbiological analysis. The same 15 quails were then simultaneously provided with C and H2 diets for a 10-day feed choice trial. Productive performance, mortality and carcass traits were in line with commercial standards and similar in all experimental groups. With the exception of ether extract digestibility, which was lower in H1 group compared with C and H2 (P=0.0001), apparent digestibility of dry matter, CP, starch and energy did not differ among treatments. Microbial composition of excreta was also comparable among the three groups. Feed choice trial showed that quails did not express a preference toward C or H2 diets. Breast meat weight and yield did not differ among C, H1 and H2 quails. Differently, the inclusion of H meal reduced meat pHu compared with C. In conclusion, this study demonstrated that H. illucens larvae meal can partially replace conventional soya bean meal and soya bean oil in the diet for growing broiler quails, thus confirming to be a promising insect protein source for the feed industry. Further research to assess the impact of H meal on intestinal morphology as well as on meat quality and sensory profile would be of utmost importance.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Black soldier fly as dietary protein source for broiler quails: apparent digestibility, excreta microbial load, feed choice, performance, carcass and meat traits
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Black soldier fly as dietary protein source for broiler quails: apparent digestibility, excreta microbial load, feed choice, performance, carcass and meat traits
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Black soldier fly as dietary protein source for broiler quails: apparent digestibility, excreta microbial load, feed choice, performance, carcass and meat traits
      Available formats
      ×
Copyright
Corresponding author
E-mail: antonella.dallezotte@unipd.it
References
Hide All
Association of Official Analytical Chemists 2000. Official methods of analysis, 17th edition. AOAC, Arlington, VA, USA.
Biasato I, De Marco M, Rotolo L, Renna M, Lussiana C, Dabbou S, Capucchio MT, Biasibetti E, Costa P, Gai F, Pozzo L, Dezzutto D, Bergagna S, Martinez S, Tarantola M, Gasco L and Schiavone A 2016. Effects of dietary Tenebrio molitor meal inclusion in free‐range chickens. Journal of Animal Physiology and Animal Nutrition, doi:10.1111/jpn.12487.
Bovera, F, Loponte, R, Marono, S, Piccolo, G, Parisi, G, Iaconisi, V, Gasco, L and Nizza, A 2016. Use of Tenebrio molitor larvae meal as protein source in broiler diet: effect on growth performance, nutrient digestibility, and carcass and meat traits. Journal of Animal Science 94, 19.
Bovera, F, Piccolo, G, Gasco, L, Marono, S, Loponte, R, Vassalotti, G, Mastellone, V, Lombardi, P, Attia, YA and Nizza, A 2015. Yellow mealworm larvae (Tenebrio molitor, L.) as a possible alternative to soybean meal in broiler diets. British Poultry Science 56, 569575.
Commission Internationale de l’Éclairage 1976. Official recommendations on uniform colour space, colour difference equations and metric colour terms. CIE Publication no. 15 (E-1.3.1), suppl. 2. Bureau Central de la CIE, Paris, France.
De Marco, M, Martínez, S, Hernandez, F, Madrid, J, Gai, F, Rotolo, R, Belforti, M, Bergero, D, Katz, H, Dabbou, S, Kovitvadhi, A, Zoccarato, I, Gasco, L and Schiavone, A 2015. Nutritional value of two insect larval meals (Tenebrio molitor and Hermetia illucens) for broiler chickens: apparent nutrient digestibility, apparent ileal amino acid digestibility and apparent metabolizable energy. Animal Feed Science and Technology 209, 211218.
EC 1998. Commission Directive 98/64/EC of 3 September 1998 establishing Community methods of analysis for the determination of amino acids, crude oils and fats, and olaquindox in feeding stuffs and amending Directive 71/393/EEC. Official Journal of the European Union L257, 14.
Elwert, C, Knips, I and Katz, P 2010. A novel protein source: maggot meal of the black soldier fly (Hermetia illucens) in broiler feed. In 11. Tagung Schweine- und Geflügelernährung, 23.-25. November 2010 Lutherstadt Wittenberg (ed. M Gierus, H Kluth, M Bulang and H Kluge). Institut für Agrar- und Ernährungswissenschaften, Universität Halle-Wittenberg, Halle-Wittenberg, 140–142.
Fievez, V, De Fauw, K, Notteboom, K and Demeyer, D 2001. Effect of level and origin of rumen degradable nitrogen on rumen microbial growth and nitrogen utilization efficiency of animals fed maize silage at maintenance. Reproduction, Nutrition, Development 41, 349364.
Food and Agriculture Organization of the United Nations (FAO) 2010. The state of world fisheries and aquaculture 2010. FAO, Fisheries and Aquaculture Department, Rome, Italy. Retrieved March 17, 2016, from http://www.fao.org/docrep/013/i1820e/i1820e00.htm.
Food and Agriculture Organization of the United Nations (FAO) 2013. Edible insects – future prospects for food and feed security. FAO Forestry Paper No. 171, FAO, Rome, Italy, p. ix.
Food and Agriculture Organization of the United Nations (FAO) 2014. Insects to feed the World. 1st International Conference, 14–17 May 2014, Wageningen (Ede), the Netherlands, p. V.
International Organization for Standardization (ISO) 1998. Animal feeding stuffs, animal products and faeces or urine. Determination of gross calorific value – Bomb calorimetric method. Reference number 9831, prepared by Technical Committee ISO/TC 34, Agricultural food products, Subcommittee SC 10, Animal feeding stuffs.
Khempaka, S, Chitsatchapong, C and Molee, W 2011. Effect of chitin and protein constituents in shrimp head meal on growth performance, nutrient digestibility, intestinal microbial populations, volatile fatty acids, and ammonia production in broilers. Journal of Applied Poultry Research 20, 111.
Kim, SA and Rhee, MS 2016. Highly enhanced bactericidal effects of medium chain fatty acids (caprylic, capric, and lauric acid) combined with edible plant essential oils (carvacrol, eugenol, b-resorcylic acid, trans-cinnamaldehyde, thymol, and vanillin) against Escherichia coli O157:H7. Food Control 60, 447454.
Kroeckel, S, Harjes, A-GE, Roth, I, Katz, H, Wuertz, S, Susenbeth, A and Schulz, C 2012. When a turbot catches a fly: evaluation of a pre-pupae meal of the Black Soldier Fly (Hermetia illucens) as fish meal substitute – growth performance and chitin degradation in juvenile turbot (Psetta maxima). Aquaculture 364–365, 345352.
Mahdavi, R and Torki, M 2009. Study on usage period of dietary protected butyric acid on performance, carcass characteristics, serum metabolite levels and humoral immune response of broiler chickens. Journal of Animal and Veterinary Advances 8, 17021709.
Makkar, HPS, Tran, G, Heuze, V and Ankers, P 2014. State-of-the-art on use of insects as animal feed. Animal Feed Science and Technology 197, 133.
Marascuilo LA 1966. Large-sample multiple comparisons. Psychological bulletin 65, 280290.
Martínez-Sánchez, A, Magaña, C, Saloña, M and Rojo, S 2011. First record of Hermetia illucens (Diptera: Stratiomyidae) on human corpses in Iberian Peninsula. Forensic Science International 206, e76e78.
Mehri, M, Sabaghi, V and Bagherzadeh-Kasmani, F 2015. Mentha piperita (peppermint) in growing Japanese quails diet: performance, carcass attributes, morphology and microbial populations of intestine. Animal Feed Science and Technology 207, 104111.
Nguyen, TTX, Tomberlin, JK and Vanlaerhoven, S 2015. Ability of black soldier fly (Diptera: Stratiomyidae) larvae to recycle food waste. Environmental Entomology 44, 406410.
National Research Council, subcommittee on Poultry Nutrition 1994. Nutrient requirements of Ring-Necked Pheasants, Japanese Quail, and Bobwhite Quail. In Nutrient requirements of poultry, 9th revised edition, (ed. National Academy Press), pp. 4445. National Academy of Sciences, Washington, DC, USA.
Oluokun, JA 2000. Upgrading the nutritive value of full-fat soyabeans meal for broiler production with either fishmeal or black soldier fly larvae meal (Hermetia illucens). Nigerian Journal of Animal Science 3, doi:10.4314/tjas.v3i2.49768.
Park, S-I, Chang, BS and Yoe, SM 2014. Detection of antimicrobial substances from larvae of the black soldier fly, Hermetia illucens (Diptera: Stratiomyidae). Entomological Research 44, 5864.
Ravindran, V, Hew, LI, Ravindran, G and Bryden, WL 1999. A comparison of ileal digesta and excreta analysis for the determination of amino acid digestibility in food ingredients for poultry. British Poultry Science 40, 266274.
Razdan, A and Pettersson, D 1994. Effect of chitin and chitosan on nutrient digestibility and plasma lipid concentrations in broiler chickens. British Journal of Nutrition 72, 277288.
Rumpold, BA and Schlüter, OK 2013. Potential and challenges of insects as an innovative source for food and feed production. Innovative Food Science and Emerging Technologies 17, 111.
Sahin, K, Onderci, M, Sahin, N, Gursu, MF, Khachik, F and Kucuk, O 2006. Effects of lycopene supplementation on antioxidant status, oxidative stress, performance and carcass characteristics in heat-stressed Japanese quail. Journal of Thermal Biology 31, 307312.
Sahin, K, Sahin, N and Onderci, M 2002. Vitamin E supplementation can alleviate negative effects of heat stress on egg production, egg quality, digestibility of nutrients and egg yolk mineral concentrations of Japanese quails. Research in Veterinary Science 73, 307312.
Sánchez-Muros, M-J, Barroso, FG and Manzano-Agugliaro, F 2014. Insect meal as a renewable source of food for animal feeding: a review. Journal of Cleaner Production 65, 1627.
Sealey, WM, Gaylord, TG, Barrows, FT, Tomberlin, JK, McGuire, MA, Ross, C and St-Hilaire, S 2011. Sensory analysis of rainbow trout, Oncorhynchus mykiss, fed enriched black soldier fly prepupae, Hermetia illucens . Journal of the World Aquaculture Society 42, 3445.
Statistical Analysis Software for Windows 2008. Statistics version 9.1.3 ed. SAS Institute, Cary, NC, USA.
St-Hilaire S, Sheppard C, Tomberlin JK, Irving S, Newton L, McGuire MA, Mosely EE, Hardy R and Sealey W 2007. Fly prepupae as a feedstuff for rainbow trout, Onchorynchus mykiss . Journal of the World Aquaculture Society 38, 5967.
Tavaniello, S, Maiorano, G, Siwek, M, Knaga, S, Witkowski, A, Di Memmo, M and Bednarczyk, M 2014. Growth performance, meat quality traits, and genetic mapping of quantitative trait loci in 3 generations of Japanese quail populations (Coturnix japonica). Poultry Science 93, 21292140.
Terpstra, K and de Hart, N 1973. The estimation of urinary nitrogen and faecal nitrogen in poultry excreta. Zeitschrift für Tierphysiologie Tierernährung und Futtermittelkunde 32, 306320.
Tran, G, Heuzé, V and Makkar, HPS 2015. Insects in fish diets. Animal Frontiers 5, 3744.
Veldkamp, T and Bosch, G 2015. Insects: a protein-rich feed ingredient in pig and poultry diets. Animal Frontiers 5, 4550.
Veldkamp, T, van Duinkerken, G, van Huis, A, Lakemond, CMM, Ottevanger, E, Bosch, G and van Boekel, MAJS 2012. Insects as a sustainable feed ingredient in pig and poultry diets – a feasibility study. Wageningen UR Livestock Production, Wageningen, the Netherlands, report no. 638, pp. 1–48.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

animal
  • ISSN: 1751-7311
  • EISSN: 1751-732X
  • URL: /core/journals/animal
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed