Skip to main content Accessibility help
×
Home

Comparison of performance and fitness traits in German Angler, Swedish Red and Swedish Polled with Holstein dairy cattle breeds under organic production

  • A. Bieber (a1), A. Wallenbeck (a2) (a3), A. Spengler Neff (a1), F. Leiber (a1), C. Simantke (a4), U. Knierim (a4) and S. Ivemeyer (a4)...

Abstract

Although the use of local breeds is recommended by organic regulations, breed comparisons performed under organic production conditions with similar production intensities are scarce. Therefore, we compared data of local and widely used Holstein dairy cattle breeds from 2011 to 2015 regarding production, fertility and health from German and Swedish organic farms with similar management intensities within country. In Germany, the energy-corrected total milk yield tended to be lower in the local breed Original Angler Cattle (AAZ, 5193 kg) compared to the modern German Holstein Friesian breed (HO, 5620 kg), but AAZ showed higher milk fat and protein contents (AAZ v. HO: 5.09% v. 4.18% and 3.61% v. 3.31%, respectively). In Sweden, the widely used modern Swedish Holstein (SH) breed had the highest milk yield (9209 kg, fat: 4.10%, protein: 3.31%), while the local Swedish Polled (SKB) showed highest milk yield, fat and protein contents (6169 kg, 4.47%, 3.50%, respectively), followed by the local breed Swedish Red (SRB, 8283 kg, 4.33%, 3.46%, respectively). With regard to fertility characteristics, the German breeds showed no differences, but AAZ tended to have less days open compared to HO (−17 days). In Sweden, breeds did not differ with regard to calving interval, but both local breeds showed a lower number of days open (−10.4 in SRB and −24.1 in SKB compared to SH), and SKB needed fewer inseminations until conception (−0.5 inseminations) compared to SH. Proportion of test day records with a somatic cell count content of ≥100 000 cells per ml milk did not reveal breed differences in any of the two countries. German breeds did not differ regarding the proportion of cows with veterinary treatments. In Sweden, SRB showed the lowest proportion of cows with general veterinary treatment as well as specific treatment due to udder problems (22.8 ± 6.42 and 8.05 ± 2.18, respectively), but the local breed SKB did not differ from SH in either of the two traits. In Sweden, we found no breed differences regarding veterinary treatments due to fertility problems or diagnosis of claw or leg problems during claw trimming. Our results indicate a stronger expression of the antagonism between production and functional traits with increasing production intensity. Future breed comparisons, therefore, need to consider different production intensities within organic farming in order to derive practical recommendations as to how to implement European organic regulations with regard to a suitable choice of breeds.

Copyright

Corresponding author

References

Hide All
Ahlman, T, Ljung, M, Rydhmer, L, Röcklinsberg, H, Strandberg, E and Wallenbeck, A 2014. Differences in preferences for breeding traits between organic and conventional dairy producers in Sweden. Livestock Sciences 162, 514.
Bates, D, Maechler, M, Bolker, B and Walker, S 2015. Fitting linear mixed-effects models using lme4. Journal of Statistical Software 67, 148.
Berry, DP, Wall, E and Pryce, JE 2014. Genetics and genomics of reproductive performance in dairy and beef cattle. Animal 8, 105121.
Bieber, A, Wallenbeck, A, Leiber, L, Fuerst-Waltl, B, Winckler, C, Gullstrand, P, Walczak, J, Wójcik, P and Spengler Neff, A 2019. Production level, fertility, health traits and longevity in local and commercial dairy breeds under organic production conditions in Austria, Switzerland, Poland and Sweden. Journal of Dairy Science 102, 53305341.
Curone, G, Filipe, J, Cremonesi, P, Trevisi, E, Amadori, M, Pollera, C, Castiglioni, B, Turin, L, Tedde, V, Vigo, D, Moroni, P, Minuti, A, Bronzo, V, Addis, MF and Riva, F 2018. What we have lost: mastitis resistance in Holstein Friesians and in a local cattle breed. Research in Veterinary Science 116, 8898.
Curone, G, Zanini, M, Pansere, S, Colombani, C, Moroni, P, Riva, F and Faustini, M 2016. Milk ketone bodies assessment in a local Italian cow breed (Modense) versus Holstein and characterization of its physiological, reproductive and productive performances. International Journal of Environmental and Agriculture Research 2, 1522.
Dufour, S, Fréchette, A, Barkema, HW, Mussell, A and Scholl, DT 2011. Invited review: effect of udder health management practices on herd somatic cell count. Journal of Dairy Science 94, 563579.
EC 2007. Council Regulation (EC-No 834/2007) of 28 June 2007 on organic production and labelling of organic products and repealing Regulation (EEC) No 2092/91. Official Journal of the European Communities L198, 123.
Friggens, NC, Blanc, F, Berry, DP and Puillet, L 2017. Review: deciphering animal robustness. A synthesis to facilitate its use in livestock breeding and management. Animal 11, 22372251.
Fuerst-Waltl, B, Fuerst, C, Obritzhauser, W and Egger-Danner, C 2016. Sustainable breeding objectives and possible selection response: finding the balance between economics and breeders’ preferences. Journal of Dairy Science 99, 97969809.
Gandini, G, Maltecca, C, Pizzi, F, Bagnato, A and Rizzi, R 2007. Comparing local and commercial breeds on functional traits and profitability. The case of Reggiana dairy cattle. Journal of Dairy Science 90, 20042011.
Hamann, J 2005. Diagnosis of mastitis and indicators of milk quality. In Mastitis in dairy production: current knowledge and future solutions (ed. Hogeveen, H), pp. 8290. Wageningen Academic Publishers, Wageningen, The Netherlands.
Heller, D and Potthast, V 1990. Successful feeding of dairy cattle, 2nd edition. DLG-Verlag, Frankfurt am Main, Germany.
Horn, M, Steinwidder, A, Gasteiner, J, Podstatzky, L, Haiger, A and Zollitsch, W 2013. Suitability of different dairy cow types for an Alpine organic and low-input milk production system. Livestock Science 153, 135146.
Ingvartsen, KL, Dewhust, RJ and Friggens, NC 2003. On the relationship between lactational performance and health: is it yield or metabolic imbalance that cause production diseases in dairy cattle? A position paper. Livestock Production Science 83, 277308.
Ivemeyer, S, Brinkmann, J, March, S, Simantke, C, Winckler, C and Knierim, U 2018. Major organic dairy farm types in Germany and their farm, herd, and management characteristics. Organic Agriculture 8, 231247.
Knaus, W 2009. Dairy cows trapped between performance demands and adaptability. Journal of the Science of Food and Agriculture 89, 11071114.
Krieger, M, Sjöström, K, Blanco-Penedo, I, Madouasse, A, Duval, JE, Bareille, N, Fourichon, C, Sundrum, A and Emanuelson, U 2017. Prevalence of production disease related indicators in organic dairy herds in four European countries. Livestock Science 198, 104108.
Leiber, F, Schenk, IK, Maeschli, A, Ivemeyer, S, Zeitz, JO, Moakes, S, Klocke, P, Staehli, P, Notz, C and Walkenhorst, M 2017. Implications of feed concentrate reduction in organic grassland-based dairy systems: a long-term on-farm study. Animal 11, 20512060.
Lenth, RV 2016. Least-squares means: the R package ismeans. Journal of Statistical Software 69, 133.
Magne, MA, Thénard, V and Mihout, S 2016. Initial insights on the performances and management of dairy cattle herd combining two breeds with contrasting features. Animal 10, 892901.
Marley, CL, Weller, RF, Neale, M, Main, DCJ, Roderick, S and Keatinge, R 2010. Aligning health and welfare principles and practice in organic dairy systems: a review. Animal 4, 259271.
Oltenacu, PA and Broom, DM 2010. The impact of genetic selection for increased milk yield on the welfare of dairy cows. Animal Welfare 19, 3949.
Piccand, V, Cutullic, E, Meier, S, Schori, F, Kunz, PL, Roche, JR and Thomet, P 2013. Production and reproduction of Fleckvieh, Brown Swiss, and 2 strains of Holstein-Friesian cows in a pasture-based, seasonal-calving dairy system. Journal of Dairy Science 96, 53525363.
R Core Team 2016. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/
Slagboom, M, Kargo, M, Edwards, D, Sørensen, AC, Thomasen, JR and Hjortø, L 2016. Organic dairy farmers put more emphasis on production traits than conventional farmers. Journal of Dairy Science 99, 98459856.
Spengler Neff, A, Mahrer, D, Moll, J, Burren, A and Flury, C 2012. Analyses of different brown cattle breeds and their crosses in Switzerland. In Book of Abstracts of the 63rd Annual Meeting of the European Federation of Animal Science, Bratislava, Slovakia, p. 148. Wageningen Academic Publishers, Wageningen, The Netherlands.
Sundberg, T, Berglund, B, Rhymer, L and Strandberg, F 2009. Fertility, somatic cell count and milk production in Swedish organic and conventional dairy herds. Livestock Science 126, 176182.
Växa Sverige 2015. Växa Sverige. Cattle statistics 2015. Retrieved on 8 December 2018 from https://www.vxa.se/globalassets/dokument/statistik/husdjursstatistik-arsredovisning-2015.pdf
Wallenbeck, A, Rousing, T, Sørensen, J T, Bieber, A, Spengler Neff, A, Fuerst-Waltl, B, Winckler, C, Pfeiffer, C, Steininger, F, Simantke, C, March, S, Brinkmann, J, Walczak, J, Wójcik, P, Ribikauskas, V, Wilhelmsson, S, Skjerve, T and Ivemeyer, S 2018. Characteristics of organic dairy major farm types in seven European countries. Organic Agriculture. doi: 10.1007/s13165-018-0227-9
Zehetmeier, M, Baudracco, J, Hoffmann, H and Heißenhuber, A 2012. Does increasing milk yield per cow reduce greenhouse gas emissions? A system approach. Animal 6, 154166.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed