Skip to main content Accessibility help
×
×
Home

Effect of predictor traits on accuracy of genomic breeding values for feed intake based on a limited cow reference population

  • M. Pszczola (a1) (a2) (a3), R. F. Veerkamp (a1) (a2), Y. de Haas (a1), E. Wall (a4), T. Strabel (a3) and M. P. L. Calus (a1)...

Abstract

The genomic breeding value accuracy of scarcely recorded traits is low because of the limited number of phenotypic observations. One solution to increase the breeding value accuracy is to use predictor traits. This study investigated the impact of recording additional phenotypic observations for predictor traits on reference and evaluated animals on the genomic breeding value accuracy for a scarcely recorded trait. The scarcely recorded trait was dry matter intake (DMI, n = 869) and the predictor traits were fat–protein-corrected milk (FPCM, n = 1520) and live weight (LW, n = 1309). All phenotyped animals were genotyped and originated from research farms in Ireland, the United Kingdom and the Netherlands. Multi-trait REML was used to simultaneously estimate variance components and breeding values for DMI using available predictors. In addition, analyses using only pedigree relationships were performed. Breeding value accuracy was assessed through cross-validation (CV) and prediction error variance (PEV). CV groups (n = 7) were defined by splitting animals across genetic lines and management groups within country. With no additional traits recorded for the evaluated animals, both CV- and PEV-based accuracies for DMI were substantially higher for genomic than for pedigree analyses (CV: max. 0.26 for pedigree and 0.33 for genomic analyses; PEV: max. 0.45 and 0.52, respectively). With additional traits available, the differences between pedigree and genomic accuracies diminished. With additional recording for FPCM, pedigree accuracies increased from 0.26 to 0.47 for CV and from 0.45 to 0.48 for PEV. Genomic accuracies increased from 0.33 to 0.50 for CV and from 0.52 to 0.53 for PEV. With additional recording for LW instead of FPCM, pedigree accuracies increased to 0.54 for CV and to 0.61 for PEV. Genomic accuracies increased to 0.57 for CV and to 0.60 for PEV. With both FPCM and LW available for evaluated animals, accuracy was highest (0.62 for CV and 0.61 for PEV in pedigree, and 0.63 for CV and 0.61 for PEV in genomic analyses). Recording predictor traits for only the reference population did not increase DMI breeding value accuracy. Recording predictor traits for both reference and evaluated animals significantly increased DMI breeding value accuracy and removed the bias observed when only reference animals had records. The benefit of using genomic instead of pedigree relationships was reduced when more predictor traits were used. Using predictor traits may be an inexpensive way to significantly increase the accuracy and remove the bias of (genomic) breeding values of scarcely recorded traits such as feed intake.

Copyright

Corresponding author

References

Hide All
Aguilar, I, Misztal, I, Tsuruta, S, Wiggans, GR, Lawlor, TJ 2011. Multiple trait genomic evaluation of conception rate in Holsteins. Journal of Dairy Science 94, 26212624.
Banos, G, Coffey, MP, Veerkamp, RF, Berry, DP, Wall, E 2012. Merging and characterising phenotypic data on conventional and rare traits from dairy cattle experimental resources in three countries. Animal 6, 10401048.
Bell, MJ, Wall, E, Russell, G, Simm, G, Stott, AW 2011. The effect of improving cow productivity, fertility, and longevity on the global warming potential of dairy systems. Journal of Dairy Science 94, 36623678.
Calus, MPL 2010. Genomic breeding value prediction: methods and procedures. Animal 4, 157164.
Calus, MPL, Veerkamp, RF 2011. Accuracy of multi-trait genomic selection using different methods. Genetics Selection Evolution 43, 26.
Calus, MPL, Mulder, HA, Bastiaansen, JWM 2011. Identification of Mendelian inconsistencies between SNP and pedigree information of sibs. Genetics Selection Evolution 43, 34.
Calus, MPL, de Haas, Y, Pszczola, M, Veerkamp, RF 2013. Predicted accuracy of and response to genomic selection for new traits in dairy cattle. Animal 7, 183191.
Coffey, MP, Simm, G, Oldham, JD, Hill, WG, Brotherstone, S 2004. Genotype and diet effects on energy balance in the first three lactations of dairy cows. Journal of Dairy Science 87, 43184326.
Daetwyler, HD, Villanueva, B, Woolliams, JA 2008. Accuracy of predicting the genetic risk of disease using a genome-wide approach. PLoS One 3, e3395.
de Haas, Y, Calus, MPL, Veerkamp, RF, Wall, E, Coffey, MP, Daetwyler, HD, Hayes, BJ, Pryce, JE 2012. Improved accuracy of genomic prediction for dry matter intake of dairy cattle from combined European and Australian data sets. Journal of Dairy Science 95, 61036112.
Gilmour, AR, Gogel, BJ, Cullis, BR, Thompson, R 2009. ASReml user guide release 3.0. VSN International Ltd, Hemel Hempstead, UK.
Goddard, M 2009. Genomic selection: prediction of accuracy and maximisation of long term response. Genetica 136, 245257.
Hayes, BJ, Bowman, PJ, Chamberlain, AJ, Goddard, ME 2009. Invited review: genomic selection in dairy cattle: progress and challenges. Journal of Dairy Science 92, 433443.
Horan, B, Dillon, P, Berry, DP, O'Connor, P, Rath, M 2005. The effect of strain of Holstein Friesian, feeding system and parity on lactation curves characteristics of spring-calving dairy cows. Livestock Production Science 95, 231241.
Jia, Y, Jannink, J-L 2012. Multiple trait genomic selection methods increase genetic value prediction accuracy. Genetics 192, 15131522.
Jiménez-Montero, JA, González-Recio, O, Alenda, R 2012. Genotyping strategies for genomic selection in small dairy cattle populations. Animal 6, 12161224.
Johanson, JM, Berger, PJ 2003. Birth weight as a predictor of calving ease and perinatal mortality in Holstein cattle. Journal of Dairy Science 86, 37453755.
Lee, SH, Goddard, ME, Visscher, PM, van der Werf, JHJ 2010. Using the realized relationship matrix to disentangle confounding factors for the estimation of genetic variance components of complex traits. Genetics Selection Evolution 42, 22.
Lund, M, de Roos, A, de Vries, A, Druet, T, Ducroq, V, Fritz, S, Guillaume, F, Guldbrandtsen, B, Liu, Z, Reents, R, Schrooten, C, Seefried, F, Su, G 2011. A common reference population from four European Holstein populations increases reliability of genomic predictions. Genetics Selection Evolution 43, 43.
Meuwissen, T 2009. Accuracy of breeding values of ‘unrelated’ individuals predicted by dense SNP genotyping. Genetics Selection Evolution 41, 35.
Meuwissen, T, Hayes, B, Goddard, M 2001. Prediction of total genetic value using genome-wide dense marker maps. Genetics 157, 18191829.
Muir, WM 2007. Comparison of genomic and traditional BLUP-estimated breeding value accuracy and selection response under alternative trait and genomic parameters. Journal of Animal Breeding and Genetics 124, 342355.
Philipsson, J, Ral, G, Berglund, B 1995. Somatic cell count as a selection criterion for mastitis resistance in dairy cattle. Livestock Production Science 41, 195200.
Pryce, JE, Nielsen, BL, Veerkamp, RF, Simm, G 1999. Genotype and feeding system effects and interactions for health and fertility traits in dairy cattle. Livestock Production Science 57, 193201.
Pszczola, M, Strabel, T, Mulder, HA, Calus, MPL 2012a. Reliability of genomic selection for animals with different relationships within and to the reference population. Journal of Dairy Science 95, 389400.
Pszczola, M, Strabel, T, van Arendonk, JAM, Calus, MPL 2012b. The impact of genotyping different groups of animals on accuracy when moving from traditional to genomic selection. Journal of Dairy Science 95, 54125421.
Thompson, R, Meyer, K 1986. A review of theoretical aspects in the estimation of breeding values for multi-trait selection. Livestock Production Science 15, 299313.
Tsuruta, S, Misztal, I, Aguilar, I, Lawlor, TJ 2011. Multiple-trait genomic evaluation of linear type traits using genomic and phenotypic data in US Holsteins. Journal of Dairy Science 94, 41984204.
VanRaden, PM 2008. Efficient methods to compute genomic predictions. Journal of Dairy Science 91, 44144423.
Veerkamp, RF 1998. Selection for economic efficiency of dairy cattle using information on live weight and feed intake: a review. Journal of Dairy Science 81, 11091119.
Veerkamp, RF, Simm, G, Oldham, JD 1994. Effects of interaction between genotype and feeding system on milk-production, feed-intake, efficiency and body tissue mobilization in dairy cows. Livestock Production Science 39, 229241.
Veerkamp, RF, Emmans, GC, Cromie, AR, Simm, G 1995. Variance components for residual feed intake in dairy cows. Livestock Production Science 41, 111120.
Veerkamp, RF, Oldenbroek, JK, Van Der Gaast, HJ, Werf, JHJVD 2000. Genetic correlation between days until start of luteal activity and milk yield, energy balance, and live weights. Journal of Dairy Science 83, 577583.
Veerkamp, RF, Mulder, HA, Thompson, R, Calus, MPL 2011. Genomic and pedigree-based genetic parameters for scarcely recorded traits when some animals are genotyped. Journal of Dairy Science 94, 41894197.
Veerkamp, RF, Coffey, MP, Berry, DP, de Haas, Y, Strandberg, E, Bovenhuis, H, Calus, MPL, Wall, E 2012. Genome-wide associations for feed utilisation complex in primiparous Holstein–Friesian dairy 6 cows from experimental research herds in four European countries. Animal 6, 17381749.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

animal
  • ISSN: 1751-7311
  • EISSN: 1751-732X
  • URL: /core/journals/animal
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Type Description Title
WORD
Supplementary materials

Pszczola Supplementary Material
Appendix

 Word (93 KB)
93 KB
WORD
Supplementary materials

Pszczola Supplementary Material
Appendix

 Word (37 KB)
37 KB

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed