Skip to main content Accessibility help
×
Home

The footprint of recent and strong demographic decline in the genomes of Mangalitza pigs

  • V. A. Bâlteanu (a1), T. F. Cardoso (a2) (a3), M. Amills (a2) (a4), I. Egerszegi (a5), I. Anton (a6), A. Beja-Pereira (a7) and A. Zsolnai (a6)...

Abstract

The Mangalitza pig breed has suffered strong population reductions due to competition with more productive cosmopolitan breeds. In the current work, we aimed to investigate the effects of this sustained demographic recession on the genomic diversity of Mangalitza pigs. By using the Porcine Single Nucleotid Polymorphism BeadChip, we have characterized the genome-wide diversity of 350 individuals including 45 Red Mangalitza (number of samples; n=20 from Hungary and n=25 from Romania), 37 Blond Mangalitza, 26 Swallow-belly Mangalitza, 48 Blond Mangalitza × Duroc crossbreds, 5 Bazna swine, 143 pigs from the Hampshire, Duroc, Landrace, Large White and Pietrain breeds and 46 wild boars from Romania (n=18) and Hungary (n=28). Performance of a multidimensional scaling plot showed that Landrace, Large White and Pietrain pigs clustered independently from Mangalitza pigs and Romanian and Hungarian wild boars. The number and total length of ROH (runs of homozygosity), as well as FROH coefficients (proportion of the autosomal genome covered ROH) did not show major differences between Mangalitza pigs and other wild and domestic pig populations. However, Romanian and Hungarian Red Mangalitza pigs displayed an increased frequency of very long ROH (>30 Mb) when compared with other porcine breeds. These results indicate that Red Mangalitza pigs underwent recent and strong inbreeding probably as a consequence of severe reductions in census size.

Copyright

Corresponding author

Footnotes

Hide All
a

V. A. Bâlteanu and T. F. Cardoso share the first authorship.

Footnotes

References

Hide All
Alexander, DH and Lange, K 2011. Enhancements to the ADMIXTURE algorithm for individual ancestry estimation. BMC Bioinformatics 12, 246.
Alexander, DH, Novembre, J and Lange, K 2009. Fast model-based estimation of ancestry in unrelated individuals. Genome Research 19, 16551664.
Barbato, M, Orozco-terWengel, P, Tapio, M and Bruford, MW 2015. SNeP: a tool to estimate trends in recent effective population size trajectories using genome-wide SNP data. Frontiers in Genetics 6, 109.
Botstein, D, White, RL, Skolnick, M and Davis, RW 1980. Construction of genetic linkage map in man using restriction fragment length polymorphisms. American Journal of Human Genetics 32, 314331.
Charlesworth, D and Willis, JH 2009. The genetics of inbreeding depression. Nature Reviews Genetics 10, 783796.
Chen, S, Gomes, R, Costa, V, Santos, P, Charneca, R, Zhang, Y, Liu, X, Wang, S, Bento, P, Nunes, J-L, Buzgó, J, Varga, G, Anton, I, Zsolnai, A and Beja-Pereira, A 2013. How immunogenetically different are domestic pigs from wild boars: a perspective from single-nucleotide polymorphisms of 19 immunity-related candidate genes. Immunogenetics 65, 737748.
Ciobanu, DC, Day, AE, Nagy, A, Wales, R, Rothschild, MF and Plastow, GS 2001. Genetic variation in two conserved local Romanian pig breeds using type 1 DNA markers. Genetics Selection Evolution 33, 417432.
Dent, EA and VonHoldt, BM 2011. STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conservation Genetics Resources 4, 359361.
Draganescu, C, Ghita, E and Nagi, AI 2008. Note on the genetic history of the Romanian Saddleback (Bazna) pig breed conservation nucleus 1. Archiva Zootechnica 11, 6569.
Egerszegi, I, Rátky, J, Solti, L and Brüssow, K-P 2003. Mangalica – an indigenous swine breed from Hungary (Review). Archives Animal Breeding 46, 245256.
Evanno, G, Regnaut, S and Goudet, J 2005. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Molecular Ecology 14, 26112620.
Food and Agriculture Organization of the United Nations 2015. The second report on the state of the world’s animal genetic resources for food and agriculture. In FAO Commission on genetic resources for food and agriculture assessments (ed. Scherf BD and Pilling D). pp. 40–125. Food and Agriculture Organization of the United Nations, Rome. Retrieved on 15 February 2019 from http://www.fao.org/3/a-i4787e.pdf.
Giuffra, E, Kijas, JM, Amarger, V, Carlborg, O, Jeon, JT and Andersson, L 2000. The origin of the domestic pig: independent domestication and subsequent introgression. Genetics 154, 17851791.
Goedbloed, DJ, Megens, HJ, Van Hooft, P, Herrero-Medrano, JM, Lutz, W, Alexandri, P, Crooijmans, RPMA, Groenen, M, Van Wieren, SE, Ydenberg, RC and Prins, HHT 2013. Genome-wide single nucleotide polymorphism analysis reveals recent genetic introgression from domestic pigs into Northwest European wild boar populations. Molecular Ecology 22, 856866.
Hankó, B 1940. Ancient domestic animals of Hungary (Ősi magyar háziállataink). Tiszántúli Mg-i Kamara, Debrecen, Hungary.
Iacolina, L, Pertoldi, C, Amills, M, Kusza, S, Megens, HJ, Bâlteanu, VA, Bakan, J, Cubric-Curic, V, Oja, R, Saarma, U, Scandura, M, Šprem, N and Stronen, AV 2018. Hotspots of recent hybridization between pigs and wild boars in Europe. Scientific Reports 8, 17372.
Kumar, S, Stecher, G and Tamura, K 2016. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution 33, 18701874.
Lencz, T, Lambert, C, DeRosse, P, Burdick, KE, Morgan, TV, Kane, JM, Kucherlapati, R, Malhotra, AK 2007. Runs of homozygosity reveal highly penetrant recessive loci in schizophrenia. Proceedings of the National Academy of Sciences of the United States of America 104, 1994219947.
Manunza, A, Amills, M, Noce, A, Cabrera, B, Zidi, A, Eghbalsaied, S, de Albornoz, EC, Portell, M, Mercadé, A, Sànchez, A and Balteanu, V 2016. Romanian wild boars and Mangalitza pigs have a European ancestry and harbour genetic signatures compatible with past population bottlenecks. Scientific Reports 6, 29913.
Matiuti, M, Bogdan, AT, Crainiceanu, E and Matiuti, C 2010. Research regarding the hybrids resulted from the domestic pig and the wild boar. Scientific Papers: Animal Science and Biotechnologies 43, 188191.
Pickrell, JK and Pritchard, JK 2012. Inference of population splits and mixtures from genome-wide allele frequency data. PLOS Genetics 8, e1002967.
Purcell, S, Neale, B, Todd-Brown, K, Thomas, L, Ferreira, MAR, Bender, D, Maller, J, Sklar, P, de Bakker, PIW, Daly, MJ and Sham, PC 2007. PLINK: a tool set for whole-genome association and population-based linkage analyses. American Journal of Human Genetics 81, 559575.
Raj, A, Stephens, M and Pritchard, JK 2014. fastSTRUCTURE: variational inference of population structure in large SNP data sets. Genetics 197, 573589.
Saura, M, Fernández, A, Varona, L, Fernández, AI, de Cara, M, Barragán, C and Villanueva, B 2015. Detecting inbreeding depression for reproductive traits in Iberian pigs using genome-wide data. Genetics Selection Evolution 47, 1.
Silió, L, Rodríguez, MC, Fernández, A, Barragán, C, Benítez, R, Óvilo, C and Fernández, AI 2013. Measuring inbreeding and inbreeding depression on pig growth from pedigree or SNP-derived metrics. Journal of Animal Breeding and Genetics 130, 349360.
Yang, B, Cui, L, Perez-Enciso, M, Traspov, A, Crooijmans, RPMA, Zinovieva, N, Schook, LB, Archibald, A, Gatphayak, K, Knorr, C, Triantafyllidis, A, Alexandri, P, Semiadi, G, Hanotte, O, Dias, D, Dovč, P, Uimari, P, Iacolina, L, Scandura, M, Groenen, MAM, Huang, L and Megens, H-J 2017. Genome-wide SNP data unveils the globalization of domesticated pigs. Genetics Selection Evolution 49, 71.
Zsolnai, A, Szántó-Egész, R, Anton, I, Tóth, P, Micsinai, A and Rátky, J 2013. Mangalica fajták genetikai távolsága, elkülönítésük nukleotid polimorfizmust mutató DNS markerekkel [Genetic distance of Mangalica breeds, distinction by DNA markers showing nucleotide polymorphism]. Hungarian Veterinary Journal 135, 303307.

Keywords

Type Description Title
UNKNOWN
Supplementary materials

Bâlteanu et al. supplementary material
Bâlteanu et al. supplementary material 1

 Unknown (34.9 MB)
34.9 MB
PDF
Supplementary materials

Bâlteanu et al. supplementary material
Bâlteanu et al. supplementary material 2

 PDF (676 KB)
676 KB

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed