Crossref Citations
This article has been cited by the following publications. This list is generated based on data provided by
Crossref.
Gonzalez-Recio, O.
Pryce, J.E.
Haile-Mariam, M.
and
Hayes, B.J.
2014.
Incorporating heifer feed efficiency in the Australian selection index using genomic selection.
Journal of Dairy Science,
Vol. 97,
Issue. 6,
p.
3883.
Morris, S. T.
Chan, F. Y.
Lopez-Villalobos, N.
Kenyon, P. R.
Garrick, D. J.
and
Blair, H. T.
2014.
Growth, feed intake and maternal performance of Angus heifers from high and low feed efficiency selection lines.
Animal Production Science,
Vol. 54,
Issue. 9,
p.
1428.
Khansefid, M.
Pryce, J. E.
Bolormaa, S.
Miller, S. P.
Wang, Z.
Li, C.
and
Goddard, M. E.
2014.
Estimation of genomic breeding values for residual feed intake in a multibreed cattle population1.
Journal of Animal Science,
Vol. 92,
Issue. 8,
p.
3270.
Liinamo, A.-E.
Mäntysaari, P.
Lidauer, M. H.
and
Mäntysaari, E. A.
2015.
Genetic parameters for residual energy intake and energy conversion efficiency in Nordic Red dairy cattle.
Acta Agriculturae Scandinavica, Section A — Animal Science,
Vol. 65,
Issue. 2,
p.
63.
Egger-Danner, C.
Cole, J.B.
Pryce, J.E.
Gengler, N.
Heringstad, B.
Bradley, A.
and
Stock, K.F.
2015.
Invited review: overview of new traits and phenotyping strategies in dairy cattle with a focus on functional traits.
Animal,
Vol. 9,
Issue. 2,
p.
191.
Connor, E.E.
2015.
Invited review: Improving feed efficiency in dairy production: challenges and possibilities.
Animal,
Vol. 9,
Issue. 3,
p.
395.
Vanrobays, M.-L.
Vandenplas, J.
Hammami, H.
Froidmont, E.
and
Gengler, N.
2015.
Short communication: Novel method to predict body weight of primiparous dairy cows throughout the lactation.
Journal of Dairy Science,
Vol. 98,
Issue. 1,
p.
692.
Pryce, J.E.
Gonzalez-Recio, O.
Nieuwhof, G.
Wales, W.J.
Coffey, M.P.
Hayes, B.J.
and
Goddard, M.E.
2015.
Hot topic: Definition and implementation of a breeding value for feed efficiency in dairy cows.
Journal of Dairy Science,
Vol. 98,
Issue. 10,
p.
7340.
Wientjes, Yvonne CJ
Calus, Mario PL
Goddard, Michael E
and
Hayes, Ben J
2015.
Impact of QTL properties on the accuracy of multi-breed genomic prediction.
Genetics Selection Evolution,
Vol. 47,
Issue. 1,
Diskin, M. G.
Waters, S. M.
Parr, M. H.
and
Kenny, D. A.
2015.
Pregnancy losses in cattle: potential for improvement.
Reproduction, Fertility and Development,
Vol. 28,
Issue. 2,
p.
83.
Fischer, A.
Luginbühl, T.
Delattre, L.
Delouard, J.M.
and
Faverdin, P.
2015.
Rear shape in 3 dimensions summarized by principal component analysis is a good predictor of body condition score in Holstein dairy cows.
Journal of Dairy Science,
Vol. 98,
Issue. 7,
p.
4465.
Ventura, Ricardo V.
Miller, Stephen P.
Dodds, Ken G.
Auvray, Benoit
Lee, Michael
Bixley, Matthew
Clarke, Shannon M.
and
McEwan, John C.
2016.
Assessing accuracy of imputation using different SNP panel densities in a multi-breed sheep population.
Genetics Selection Evolution,
Vol. 48,
Issue. 1,
Macdonald, K.A.
Thomson, B.P.
and
Waghorn, G.C.
2016.
Divergence for residual feed intake of Holstein-Friesian cattle during growth did not affect production and reproduction during lactation.
Animal,
Vol. 10,
Issue. 11,
p.
1890.
Contreras-Govea, F.E.
Muck, R.E.
Weimer, P.J.
and
Hymes-Fecht, U.C.
2016.
In vitro
ruminal fermentation of treated alfalfa silage using ruminal inocula from high and low feed-efficient lactating cows.
Journal of Applied Microbiology,
Vol. 121,
Issue. 2,
p.
333.
Yudin, N. S.
Lukyanov, K. I.
Voevoda, M. I.
and
Kolchanov, N. A.
2016.
Application of reproductive technologies to improve dairy cattle genomic selection.
Russian Journal of Genetics: Applied Research,
Vol. 6,
Issue. 3,
p.
321.
VandeHaar, M.J.
Armentano, L.E.
Weigel, K.
Spurlock, D.M.
Tempelman, R.J.
and
Veerkamp, R.
2016.
Harnessing the genetics of the modern dairy cow to continue improvements in feed efficiency.
Journal of Dairy Science,
Vol. 99,
Issue. 6,
p.
4941.
Moate, Peter J.
Deighton, Matthew H.
Williams, S. Richard O.
Pryce, Jennie E.
Hayes, Ben J.
Jacobs, Joe L.
Eckard, Richard J.
Hannah, Murray C.
and
Wales, William J.
2016.
Reducing the carbon footprint of Australian milk production by mitigation of enteric methane emissions.
Animal Production Science,
Vol. 56,
Issue. 7,
p.
1017.
Manzanilla-Pech, C.I.V.
Veerkamp, R.F.
de Haas, Y.
Calus, M.P.L.
and
ten Napel, J.
2017.
Accuracies of breeding values for dry matter intake using nongenotyped animals and predictor traits in different lactations.
Journal of Dairy Science,
Vol. 100,
Issue. 11,
p.
9103.
Yao, C.
de los Campos, G.
VandeHaar, M.J.
Spurlock, D.M.
Armentano, L.E.
Coffey, M.
de Haas, Y.
Veerkamp, R.F.
Staples, C.R.
Connor, E.E.
Wang, Z.
Hanigan, M.D.
Tempelman, R.J.
and
Weigel, K.A.
2017.
Use of genotype × environment interaction model to accommodate genetic heterogeneity for residual feed intake, dry matter intake, net energy in milk, and metabolic body weight in dairy cattle.
Journal of Dairy Science,
Vol. 100,
Issue. 3,
p.
2007.
Dominik, Sonja
Smith, Jennifer L.
Conington, Joanne
Daetwyler, Hans D.
Olesen, Ingrid
and
Bunter, Kim L.
2017.
Advances in Sheep Welfare.
p.
107.