Skip to main content
×
×
Home

Indirect genetic effect model using feeding behaviour traits to define the degree of interaction between mates: an implementation in pigs growth rate

  • M. Ragab (a1) (a2), M. Piles (a1), R. Quintanilla (a1) and J. P. Sánchez (a1)
Abstract

An alternative implementation of the animal model including indirect genetic effect (IGE) is presented considering pair-mate-specific interaction degrees to improve the performance of the model. Data consisted of average daily gain (ADG) records from 663 pigs kept in groups of 10 to 14 mates during the fattening period. Three types of models were used to fit ADG data: (i) animal model (AM); (ii) AM with classical IGE (AM-IGE); and (iii) AM fitting IGE with a specific degree of interaction between each pair of mates (AM-IGEi). Several feeding behavior phenotypes were used to define the pair-mate-specific degree of interaction in AM-IGEi: feeding rate (g/min), feeding frequency (min/day), the time between consecutive visits to the feeder (min/day), occupation time (min/day) and an index considering all these variables. All models included systematic effects batch, initial age (covariate), final age (covariate), number of pigs per pen (covariate), plus the random effect of the pen. Estimated posterior mean (posterior SD) of heritability was 0.47 (0.15) using AM. Including social genetic effects in the model, total heritable variance expressed as a proportion of total phenotypic variance (T 2) was 0.54 (0.29) using AM-IGE, whereas it ranged from 0.51 to 0.55 (0.12 to 0.14) with AM-IGEi, depending on the behavior trait used to define social interactions. These results confirm the contribution of IGEs to the total heritable variation of ADG. Moreover, important differences between models were observed in EBV rankings. The percentage of coincidence of top 10% animals between AM and AM-IGEi ranged from 0.44 to 0.89 and from 0.41to 0.68 between AM-IGE and AM-IGEi. Based on the goodness of fit and predictive ability, social models are preferred for the genetic evaluation of ADG. Among models including IGEs, when the pair-specific degree of interaction was defined using feeding behavior phenotypes we obtained an increase in the accuracy of genetic parameters estimates, the better goodness of fit and higher predictive ability. We conclude that feeding behavior variables can be used to measure the interaction between pen mates and to improve the performance of models including IGEs.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Indirect genetic effect model using feeding behaviour traits to define the degree of interaction between mates: an implementation in pigs growth rate
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Indirect genetic effect model using feeding behaviour traits to define the degree of interaction between mates: an implementation in pigs growth rate
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Indirect genetic effect model using feeding behaviour traits to define the degree of interaction between mates: an implementation in pigs growth rate
      Available formats
      ×
Copyright
This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives licence (http://creativecommons.org/licenses/by-ncnd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is unaltered and is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use or in order to create a derivative work.
References
Hide All
Alemu, SW, Berg, P, Janss, L and Bijma, P 2014. Indirect genetic effects and kin recognition: estimating IGEs when interactions differ between kin and stranger. Heredity 112, 197206.
Alemu, SW, Berg, P, Janss, L and Bijma, P 2016. Estimation of indirect genetic effects in group-housed mink (Neovison vison) should account for systematic interactions either due to kin or sex. Journal of Animal Breeding and Genetics 133, 4350.
Arango, J, Misztal, I, Tsuruta, S, Culbertson, M and Herring, W 2005. Estimation of variance components including competitive effects of Large White growing gilts. Journal of Animal Science 83, 12411246.
Arlot, S and Celisse, A 2010. A survey of cross-validation procedures for model selection. Statistics Surveys 4, 4079.
Bergsma, R, kanis, E, Knol, EF and Bijma, P 2008. The contribution of social effects to heritable variation in finishing traits of domestic pigs (Sus scrofa). Genetics 178, 15591570.
Bergsma, R, Mathur, PK, Kanis, E, Verstegen, MW, Knol, EF and Van Arendonk, JA 2013. Genetic correlations between lactation performance and growing-finishing traits in pigs. Journal of Animal Science 91, 36013611.
Bijma, P 2010. Estimating indirect genetic effects: precision of estimates and optimum designs. Genetics 186, 10131028.
Bijma, P, Muir, WM and van Arendonk, JAM 2007. Multilevel selection 1: quantitative genetics of inheritance and response to selection. Genetics 175, 277288.
Camerlink, I, Bolhuis, JE, Duijvesteijn, N, van Arendonk, JAM and Bijma, P 2014. Growth performance and carcass traits in pigs selected for indirect genetic effects on growth rate in two environments. Journal of Animal Science 92, 26122619.
Camerlink, I, Ursinus, WW, Bijma, P, Kemp, B and Bolhuis, JE 2015. Indirect genetic effects for growth rate in domestic pigs alter aggressive and manipulative biting behaviour. Behavior Genetics 45, 117126.
Cantet, RJC and Cappa, EP 2008. On identifiability of (co)variance components in animal models with competition effects. Journal of Animal Breeding Genetic 125, 371381.
Chen, CY, Johnson, RK, Newman, S, Kachman, SD and Van Vleck, LD 2009. Effects of social interactions on empirical responses to selection for average daily gain of boars. Journal of Animal Science 87, 844849.
Chen, CY, Kachman, SD, Johnson, RK, Newman, S and Van Vleck, LD 2008. Estimation of genetic parameters for average daily gain using models with competition effects. Journal of Animal Science 86, 25252530.
Craig, JV and Muir, WM 1996. Group selection for adaptation to multiple-hen cages: beak-related mortality, feathering, and body weight responses. Poultry Science 75, 294302.
Ellen, ED, Rodenburg, TB, Albers, GAA, Bolhuis, JE, Camerlink, I, Duijvesteijn, N and Bijma, P 2014. The prospects of selection for social genetic effects to improve welfare and productivity in livestock. Frontiers in Genetics 5, 377391.
Falconer, DS and Mackay, TFC 1996. Introduction to Quantitative Genetics, 4th edition. Longmans Green, Harlow, Essex, UK.
Gipson, TA, Goetsch, AL, Detweiler, G, Merkel, RC and Sahlu, T 2006. Effects of the number of yearling Boer crossbred wethers per automated feeding system unit on feed intake, feeding behavior and growth performance. Small Ruminant Research 65, 161169.
Goetsch, AL, Gipson, TA, Askar, AR and Puchala, R 2010. Invited review: feeding behavior of goats. Journal of Animal Science 88, 361373.
Griffing, B 1967. Selection in reference to biological groups. I. individual and group selection applied to populations of unordered groups. Australian Journal of Biological Sciences 10, 127139.
Harb, MY, Reynolds, VS and Campling, RC 1985. Eating behaviour, social dominance and voluntary intake of silage in group-fed milking cattle. Grass Forage Science 40, 113118.
Jørgensen, GHM, Andersen, IL and Bøe, KE 2007. Feed intake and social interactions in dairy goats – the effects of feeding space and type of roughage. Applied Animal Behavior Science 107, 239251.
Khaw, HL, Ponzoni, RW, Yip, HY, Aziz, MA and Bijma, P 2016. Genetic and non-genetic indirect effects for harvest weight in the GIFT strain of Nile tilapia (Oreochromis niloticus). Aquaculture 450, 154161.
Kjaer, JB, Sorensen, P and Su, G 2001. Divergent selection on feather pecking behavior in laying hens (Gallus gallus domesticus). Applied Animal Behaviour Science 71, 229239.
Luan, S, Luo, K, Chai, Z, Cao, B, Meng, X, Lu, X, Liu, N, Shengyu Xu, S and Kong, J 2015. An analysis of indirect genetic effects on adult body weight of the Pacific white shrimp Litopenaeus vannamei at low rearing density. Genetics Selection Evolution 47, 95102.
Misztal, I and Wiggans, GR 1988. Approximation of prediction error variance in large-scale animal models. Journal Dairy Science 71, 2732.
Misztal, I, Tsuruta, S, Strabel, T, Auvray, B, Druet, T and Lee, DH 2002. BLUPF90 and related programs (BGF90). In Proceedings of the7th World Congress Genetics Applied Livestock Production, 19–23 August 2002, Montpellier, France, p. 28.
Muir, WM 2005. Incorporation of competitive effects in forest tree or animal breeding programs. Genetics 170, 12471259.
Muir, WM, Bijma, P and Schinckel, A 2013. Multilevel selection with kin and non-kin groups, experimental results with Japanese quail (Coturnix japonica). Evolution 67, 15981606.
Nielsen, BL, Lawrence, AB and Whittmore, CT 1995. Effect of group size on feeding behaviour, social behaviour, and performance of growing pigs using single-space feeders. Livestock Production Science 44, 7385.
Peeters, K, Eppink, TT, Ellen, ED, Visscher, J and Bijma, P 2012. Indirect genetic effects for survival in domestic chickens (gallus gallus) are magnified in crossbred genotypes and show a parent-of-origin effect. Genetics 192, 705713.
Piles, M, David, I, Ramon, J, Canario, L, Rafel, O, Pascual, M, Ragab, M and Sánchez, JP 2017. Interaction of direct and social genetic effects with feeding regime in growing rabbits. Genetic Selection Evolution 49, 58.
Spiegelhalter, DJ, Best, NG, Carlin, BP and Van Der Linde, A 2002. Bayesian measures of model complexity and fit. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 64, 583639.
Tibau, J, Reixach, J and Batallé, MT 1999. Tendencias geneticas en lineas maternales de raza Duroc, In Proceedings of the VIII Jornadas sobre Producción Animal (AIDA), Zaragoza, Spain.
Val-Laillet, D, de Passille, AM, Rushen, J and von Keyserlingk, MAG 2008. The concept of social dominance and the social distribution of feeding-related displacements between cows. Applied Animal Behaviour Science 111, 158172.
Van Raden, PM and Wiggans, GR 1991. Derivation, calculation, and use of national animal model information. Journal Dairy Science 74, 27372746.
Wade, MJ 1977. An experimental study of group selection. Evolution 31, 134153.
Walker, SL, Smith, RF, Routly, JE, Jones, DN, Morris, MJ and Dobson, H 2008. Lameness, activity time-budgets, and estrus expression in dairy cattle. Journal Dairy Science 91, 45524559.
Wilson, AJ, Gelin, U, Perron, MC and Réale, D 2009. Indirect genetic effects and the evolution of aggression in a vertebrate system. Proceedings of the Royal Society B: Biological Sciences 276, 533541.
Young, JM 2012. The effect of selection for residual feed intake during the grow/finish phase of production on feeding behavior traits and sow reproduction and lactation efficiency in Yorkshire pigs. Graduate Theses and Dissertations, Iowa State University, Ames, IA, USA.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

animal
  • ISSN: 1751-7311
  • EISSN: 1751-732X
  • URL: /core/journals/animal
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed