Skip to main content
×
×
Home

Influence of weaning regimen on intake, growth characteristics and plasma blood metabolites in male buffalo calves

  • M. A. Rashid (a1), T. N. Pasha (a1), M. A. Jabbar (a1), A. Ijaz (a2), H. Rehman (a2) and M. S. Yousaf (a2)...
Abstract

Experiment was conducted to evaluate the effect of weaning age on growth performance, feed intake, feed efficiency (FE) and blood metabolites in Nili-Ravi male buffalo (Bubalus bubalis) calves. Twenty-four male buffalo calves were assigned to one of the three treatment groups: continuous milk feeding (CMF), limited milk feeding (LMF) and early weaning (EW), and weaned off milk at 12, 10 and 8 weeks of age, respectively. For the first 3 days after birth, calves in all three treatments were fed colostrum, and were then moved to individual milk feeding at 10% of BW for the next 6 weeks. Thereafter, the provision of milk to the CMF group was gradually tapered to zero through week 12, using week 6 intakes as a base. The LMF calves were fed milk at 7.5%, 5.0%, 3.5%, and 1.5% of BW during weeks 7 to 10, respectively. Lastly, calves in the EW group were fed milk at 5.0% and 2.5% of BW at weeks 7 and 8, respectively. Calf starter (CS) feed was also provided ad libitum from weeks 2 to 12 and individual intakes were recorded on a daily basis. Blood samples were taken from weeks 6 to 12, on a weekly basis; whereas, the BW, heart girth, withers height and hip width were measured at the start of experiment and later on a weekly basis. Weight gain, average daily gain, and body measurements were the same across all three groups. Milk intake was lower (P < 0.05), whereas CS intake was greater (P < 0.05) in the EW calves compared with the other treatment groups. Dry matter intake was greater (P < 0.05) in the EW and LMF calves compared with the CMF calves. The FE was greater (P < 0.05) in the CMF calves compared with the LMF and EW treatment groups. Blood glucose concentration was similar among the treatments; however, blood urea nitrogen was greater (P < 0.05) in the EW calves compared with the CMF and LMF groups. Plasma concentration of non-esterified fatty acids was higher (P < 0.05) in the EW calves compared with the CMF calves. In light of these results, it is evident that buffalo calves can be successfully weaned as early as 8 weeks of age without negatively affecting their growth performance.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Influence of weaning regimen on intake, growth characteristics and plasma blood metabolites in male buffalo calves
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Influence of weaning regimen on intake, growth characteristics and plasma blood metabolites in male buffalo calves
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Influence of weaning regimen on intake, growth characteristics and plasma blood metabolites in male buffalo calves
      Available formats
      ×
Copyright
Corresponding author
E-mail: tnpasha@uvas.edu.pk
References
Hide All
Ahmad, S, Yaqoob, M, Hashmi, N, Zaman, MA, Amjad, MS 2009. Farmers'attitude towards interventions regarding buffalo calf health care and management practices under field conditions. Pakistan Veterinary Journal 80, 125128.
Anderson, KL, Nagaraja, TG, Morrill, JL, Avery, TB, Galitzer, SJ, Boyer, JE 1987. Ruminal microbial development in conventionally or early-weaned calves. Journal of Animal Science 64, 12151226.
Appleby, MC, Weary, DM, Chua, B 2001. Performance and feeding behaviour of calves on ad libitum milk from artificial teats. Applied Animal Behaviour Science 74, 191201.
Association of Officail Analytical Chemists 1990. Official methods of analysis, 15th edition. AOAC, Arlington, VA, USA.
Baldwin, RL VI, McLeod, KR, Klotz, JL, Heitmann, RN 2004. Rumen development, intestinal growth and hepatic metabolism In the pre- and postweaning ruminant. Journal of Dairy Science 87 (Suppl), E55E65.
Beharka, AA, Nagaraja, TG, Morrill, JL, Kennedy, GA, Klemm, RD 1998. Effects of form of the diet on anatomical, microbial, and fermentative development of the rumen of neonatal calves. Journal of Dairy Science 81, 19461955.
Blome, RM, Drackley, JK, McKeith, FK, Hutjens, MF, McCoy, GC 2003. Growth, nutrient utilization, and body composition of dairy calves fed milk replacers containing different amounts of protein. Journal of Dairy Science 81, 16411655.
Diaz, MC, Van Amburgh, ME, Smith, JM, Kelsey, JM, Hutten, EL 2001. Composition of growth of Holstein calves fed milk replacer from birth to 105-kilogram body weight. Journal of Dairy Science 84, 830842.
Funaba, M, Kagiyama, K, Iriki, T, Abe, M 1994. Changes in nitrogen balance with age in calves weaned at 5 or 6 weeks of age. Journal of Animal Science 72, 732738.
Galton, DM, Brakel, WJ 1976. Influence of feeding milk replacer once versus twice daily on growth, organ measurements, and mineral content of tissues. Journal of Dairy Science 59, 944948.
Hadorn, U, Hammon, H, Bruckmaier, RM, Blum, JW 1997. Delaying colostrum intake by one day has important effects on metabolic traits and on gastrointestinal and metabolic hormones in neonatal calves. Journal of Nutrition 127, 20112023.
Hammon, HM, Schiessler, G, Nussbaum, A, Blum, JW 2002. Feed intake patterns, growth performance, and metabolic and endocrine traits in calves fed unlimited amounts of colostrum and milk by automate, starting in the neonatal period. Journal of Dairy Science 85, 33523362.
Hodgson, J 1971. The development of solid food intake in calves. The relationship between liquid and solid food intake and the development of the alimentary tract. Animal Production 13, 593597.
Hopkins, BA 1997. Effects of the method of calf starter delivery and effects of weaning age on starter intake and growth of Holstein calves fed milk once daily. Journal of Dairy Science 80, 22002203.
Huber, JT, Silva, AG, Campos, OF, Mathieu, CM 1984. Influence of feeding different amounts of milk on performance, health, and absorption capability of baby calves. Journal of Dairy Science 67, 29572963.
Jasper, J, Weary, DM 2002. Effects of ad libitum milk intake on dairy calves. Journal of Dairy Science 85, 30543058.
Kehoe, SI, Dechow, CD, Heinrichs, AJ 2007. Effects of weaning age and milk feeding frequency on dairy calf growth, health and rumen parameters. Livestock Science 110, 267272.
Khan, MA, Lee, HJ, Lee, WS, Kim, HS, Kim, SB, Ki, KS, Ha, JK, Lee, HG, Choi, YJ 2007a. Pre-and postweaning performance of Holstein female calves fed milk through step-down and conventional methods. Journal of Dairy Science 90, 876885.
Khan, ZU, Khan, S, Ahmad, N, Raziq, A 2007b. Investigation of mortality incidence and managemental practices in buffalo calves at commercial dairy farms in Peshawar city. Journal of Agricultural and Biological Science 2, 1622.
Klein, RD, Kincaid, RL, Hodgson, AS, Harrison, JH, Hillers, JK, Cronrath, JD 1987. Dietary fiber and early weaning on growth and rumen development of calves. Journal of Dairy Science 70, 20952104.
Kristensen, NB, Sehested, J, Jensen, SK, Vestergaard, M 2007. Effect of milk allowance on concentrate intake, ruminal environment, and ruminal development in milk-fed Holstein calves. Journal of Dairy Science 90, 43464355.
Le Cozler, Y, Lollivier, V, Lacasse, P, Disenhaus, C 2008. Rearing strategy and optimizing first-calving targets in dairy heifers: a review. Animal 2, 13931404.
Owen, FG, Larson, LL 1982. A simplified liquid feeding program for calves. Journal of Dairy Science 65, 13501356.
Quigley, JD III 1996. Influence of weaning method on growth, intake, and selected blood metabolites in Jersey calves. Journal of Dairy Science 79, 22552260.
Quigley, JD III, Wolfe, TA, Elsasser, TH 2006. Effects of additional milk replacer feeding on calf health, growth, and selected blood metabolites in calves. Journal of Dairy Science 89, 207216.
Quigley, JD, Caldwell, LA, Sinks, GD, Heitmann, RN 1991. Changes in blood glucose, nonesterified fatty acids, and ketones in response to weaning and feed intake in young calves. Journal of Dairy Science 74, 250257.
Sultan, JI, Javaid, A, Nadeem, M, Akhtar, MZ, Mustafa, MI 2009. Effect of varying ruminally degradable to ruminally undegradable protein ratio on nutrient intake, digestibility and N metabolism in Nili Ravi buffalo calves (Bubalus bubalis). Livestock Science 122, 130133.
Terré, M, Devant, M, Bach, A 2007. Effect of level of milk replacer fed to Holstein calves on performance during the preweaning period and starter digestibility at weaning. Livestock Science 110, 8288.
Thomas, M 2006. Growth, rumen development, and metabolism of Holstein calves fed distillers grains. Thesis MS, South Dakota State University, Brookings, USA.
Van Soest, PJ, Robertson, JB, Lewis, BA 1991. Carbohydrate methodology, metabolism, and nutritional implications in dairy cattle. Methods for dietary fiber, neutral detergent fiber, and non-starch polysaccharides in relation to animal nutrition. Journal of Dairy Science 74, 35833597.
Younas, M, Yaqoob, M 2002. Rural livestock production in Pakistan. Report from Department of Livestock Management, Faculty of Animal Husbandry, University of Agriculture, Faisalabad, Pakistan.
Zitnan, R, Kuhla, S, Sanftleben, P, Bilska, A, Schneider, F, Zupcanova, M, Voigt, J 2005. Diet induced ruminal papillae development in neonatal calves not correlating with rumen butyrate. Veterínárni Medícína 50, 472479.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

animal
  • ISSN: 1751-7311
  • EISSN: 1751-732X
  • URL: /core/journals/animal
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed