Skip to main content
×
×
Home

Investigation of growth rate variation between commercial pig herds

  • E. Magowan (a1), M. E. E. McCann (a1) (a2), V. E. Beattie (a3), K. J. McCracken (a2), W. Henry (a3), S. Smyth (a4), R. Bradford (a4), F. J. Gordon (a4) and C. S. Mayne (a1) (a2)...
Abstract

The study was designed to provide quantifiable information on both within- and between-herd variation in pig growth rate from birth to slaughter and to examine how this was influenced by moving pigs at a common age to a common environment. Five litters were selected from each of eight pig herds in Northern Ireland with varying growth performance. All eight herds were offered the same nutritional regime. Five pigs (three boars and two gilts) were selected from each litter. In each herd, 22 pigs (12 boars and 10 gilts) were weighed individually, every 4 weeks, from 4 to 20 weeks of age. At 4 weeks of age (weaning) three non-sibling boars were taken from each herd and brought to a common environment where they received medication, were housed individually from 6 weeks of age and offered the same dietary regime. They were weighed and feed intakes were recorded twice weekly. A growth rate difference of 61 g/day (P < 0.001), 112 g/day (P < 0.01) and 170 g/day (P < 0.001) was observed on farm, between the top and bottom quartile of herds during 4 to 8, 8 to 12 and 12 to 20 weeks of age, respectively. This difference in growth rate equated to an average difference in cost of production of ¢13/kg carcass on a birth to bacon unit. When pigs from the different herds were housed in the common environment, large variation in growth performance (143 g/day (P < 0.01) and 243 g/day (P < 0.001) for 8 to 12 and 12 to 20 weeks, respectively) was also observed between the top and bottom quartile of herds. Although feed efficiency was similar, a significant feed intake difference of 329 g/day (P < 0.01) and 655 g/day (P < 0.001) between 8 to 12 and 12 to 20 weeks of age was observed. The variation in growth rate between pigs whether managed on farm or in the common environment was similar (variation in days to 100 kg on farm and in the common environment was 18 and 19 days, respectively). When housed in the common environment, although the top and bottom quartile of pigs converted feed equally efficiently, pigs in the top quartile had significantly higher feed intakes suggesting greater appetites. It is difficult to assess the extent to which these differences can be attributed to genetic effects or pre-weaning environment, and how much the effects of management, disease or genetics contributed to the variation between and within herds.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Investigation of growth rate variation between commercial pig herds
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Investigation of growth rate variation between commercial pig herds
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Investigation of growth rate variation between commercial pig herds
      Available formats
      ×
Copyright
Corresponding author
E-mail: elizabeth.magowan@afbini.gov.uk
References
Hide All
Black, JL, Giles, LR, Wynn, PC, Knowles, AG, Kerr, CA, Jones, MR, Strom, AD, Gallagher, NL, Eamens, GJ 2001. Factors limiting the performance of growing pigs in commercial environments. In Manipulating pig production VIII (ed. PD Cranwell), pp. 936.Australasian Pig Science Association (APSA), Werribee, Victoria, Australia.
Bruininx, EMAM, Van der Peet-Schwering, CMC, Schrama, JW 2001. Individual feed intake of group housed weaned pigs and health status. In The weaner pig, nutrition and management (ed. MA Varley and J Wiseman), pp. 113122. CABI Publishing, Wallingford, UK.
Campbell, RG, Taverner, MR 1985. Effect of strain and sex on protein and energy metabolism in growing pigs. In Energy metabolism of farm animals (ed. RW Moe, HF Tyrell and PJ Reynold), pp. 7881 European Association of Animal Production publication no. 32. Rowan and Littlefield, New Jersey, USA.
David, PJ, Johnson, RK, Socha, TE 1983. Genetic and phenotypic parameters estimated from Nebraska specific-pathogen-free swine filed records. Journal of Animal Science 57, 11171123.
Deen, J, Dritz, S, Watkins, L, Weldon, W 1998. Feeding tylosin alters the distribution of market pig gains Proceedings of the 15th International Pig Veterinary Society, Birmingham, England p. 211.
Donnelly E 2004. Pig benchmarking. Report 2003–2004. Occasional publication. College of Agriculture, Food and Rural Development, Department of Agriculture and Rural Development for Northern Ireland, UK.
Donnelly E 2006. Pig benchmarking. Report 2005–2006. Occasional publication. College of Agriculture, Food and Rural Development, Department of Agriculture and Rural Development for Northern Ireland, UK.
English, PR, Fowler, VR, Baxter, S, Smith, B 1988. Measures of efficiency in pig meat production and the major controlling factors. In The growing and finishing pig: improving efficiency (ed. PR English, VR Fowler, S Baxter and B Smith), pp. 1325. Framing Press, Ipswich, UK.
Frey, B 1998. Novel ways of analysing grower pig performance. Proceedings of the Australian Association of Pig Veterinary, Sydney, Australia, pp. 4952.
Geary, TM, Brooks, PH 1998. The effect of weaning weight and age on the post-weaning growth performance of piglets fed fermented liquid diets. The Pig Journal 42, 1023.
Genstat 2002. Genstat 6.1 reference manual. Clarendon Press, Oxford, UK.
Gonyou, HW 1998. Sorting and mixing of grower/finisher pigs Proceedings of the 1998 Allen D. Leman swine conferenceUniversity of Minnesota, Minnesota, USA, pp. 126128.
Hall, AD, Hill, WG, Bampton, PR, Webb, AJ 1999. Genetic and phenotypic parameter estimates for feeding pattern and performance test traits in pigs. Animal Science 68, 4348.
Hessing, MJC, Schouten, WGP, Wiepkema, PR, Tielen, MJM 1994. Implications of individual behavioural characteristics on performance in pigs. Livestock Production Science 40, 187196.
Kennedy, BW 1984. Between and within litter variation, sex effects and trends in sire and dam transmitting abilities or performance tested pigs in Ontario. Journal of Animal Science 59, 338345.
McCann MEE and Beattie VE 2004. The effects of sire type on reproduction, production performance and carcass quality of pigs. Report prepared for the Ulster farmers’ union (UFU) and the pig production development committee (PPDC) committees. Occasional publication. Agricultural Research Institute of Northern Ireland, UK.
Mahan, DC, Lepine, AJ 1991. Effect of pig weaning weight and associated nursery feeding programs on subsequent performance to 105 kilograms body weight. Journal of Animal Science 69, 13701378.
Miller, HM, Toplis, P, Slade, RD 1999. Weaning weight and daily live weight gain in the week after weaning predict piglet performance. In Manipulating pig production VII(ed. PD Cranwell), p. 130. Australasian Pig Science Association (APSA), Werribee, Victoria, Australia.
Milligan, BN, Fraser, D, Kramer, DL 2001. Birth weight variation in the domestic pig: effects on offspring survival, weight gain and suckling behaviour. Applied Animal Behaviour Science 73, 179191.
O’Connell, NE, Beattie, VE, Weatherup, RN 2002. Influence of feeder type on the performance and behaviour of weaned pigs. Livestock Production Science 74, 1317.
O’Connell, NE, Beattie, VE, Weatherup, RN 2004. Influence of group size during the post-weaning period on the performance and behaviour of pigs. Livestock Production Science 86, 225232.
Pajor, EA, Fraser, D, Kramer, DL 1991. Consumption of solid food by suckling pigs: individual variation and relation to weight gain. Applied Animal Behaviour Science 32, 139155.
Patrick, GF, Hurt, CA, Overend, C 1993. Marketing concerns in all-in/all-out production, pp. 5359. Purdue swine day reportPurdue University, Purdue, Indiana, USA.
Payne, HG, Mullan, BP, Trezona, M, Frey, B 1999. Variation in pig production and performance. In Manipulating pig production VII (ed. PD CRanwell), pp. 1326. Australasian Pig Science Association (APSA), Werribee, Victoria, Australia.
Skirrow, SZ 1993. Effects of stocking arrangements on respiratory disease of pigs. In Manipulating pig production III (ed. ES Batterham), pp. 98104. Australasian Pig Science Association (APSA), Werribee, Victoria, Australia.
Slade, RD, Miller, HM 1999. Influences of litter origin and weaning weight on post-weaning piglet growth. In Manipulating pig production VII (ed. PD Cranwell), p. 131. Australasian Pig Science Association (APSA), Werribee, Victoria, Australia.
Stein, TE, Duffy, SJ, Wickstrom, S 1990. Differences in production values between high- and low-productivity swine breeding herds. Journal of Animal Science 68, 39723979.
Tillman, PD 1997. Methods of improving performance and handling of tail-end pigs Proceedings of the 28th annual meeting of the American Association of Swine Practitioners Quebec City, Canada, pp. 113115.
Tindsley, WEC, Lean, IJ 1984. Effects of weight range at allocation on production and behaviour in fattening pig groups. Applied Animal Behaviour Science 12, 7992.
Weatherup, RN, Beattie, VE, McCracken, KJ, Henry, RW, McIllroy, SG, Smyth, S 2002. The effects of energy and lysine concentrations in grower diets for pigs on performance from 8 to 12 weeks of age. Irish Journal of Agricultural Food Research 41, 95104.
Whittemore, CT, Green, DM 2001. Growth of the young weaned pig. In The weaner pig, nutrition and management (ed. MA Varley and J Wiseman), pp. 116. CABI Publishing, Wallingford, UK.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

animal
  • ISSN: 1751-7311
  • EISSN: 1751-732X
  • URL: /core/journals/animal
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed