Skip to main content
×
×
Home

Invited review: A position on the Global Livestock Environmental Assessment Model (GLEAM)

  • M. J. MacLeod (a1), T. Vellinga (a2), C. Opio (a3), A. Falcucci (a3), G. Tempio (a3), B. Henderson (a4), H. Makkar (a3), A. Mottet (a3), T. Robinson (a5), H. Steinfeld (a3) and P. J. Gerber (a2) (a3)...
Abstract

The livestock sector is one of the fastest growing subsectors of the agricultural economy and, while it makes a major contribution to global food supply and economic development, it also consumes significant amounts of natural resources and alters the environment. In order to improve our understanding of the global environmental impact of livestock supply chains, the Food and Agriculture Organization of the United Nations has developed the Global Livestock Environmental Assessment Model (GLEAM). The purpose of this paper is to provide a review of GLEAM. Specifically, it explains the model architecture, methods and functionality, that is the types of analysis that the model can perform. The model focuses primarily on the quantification of greenhouse gases emissions arising from the production of the 11 main livestock commodities. The model inputs and outputs are managed and produced as raster data sets, with spatial resolution of 0.05 decimal degrees. The Global Livestock Environmental Assessment Model v1.0 consists of five distinct modules: (a) the Herd Module; (b) the Manure Module; (c) the Feed Module; (d) the System Module; (e) the Allocation Module. In terms of the modelling approach, GLEAM has several advantages. For example spatial information on livestock distributions and crops yields enables rations to be derived that reflect the local availability of feed resources in developing countries. The Global Livestock Environmental Assessment Model also contains a herd model that enables livestock statistics to be disaggregated and variation in livestock performance and management to be captured. Priorities for future development of GLEAM include: improving data quality and the methods used to perform emissions calculations; extending the scope of the model to include selected additional environmental impacts and to enable predictive modelling; and improving the utility of GLEAM output.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Invited review: A position on the Global Livestock Environmental Assessment Model (GLEAM)
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Invited review: A position on the Global Livestock Environmental Assessment Model (GLEAM)
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Invited review: A position on the Global Livestock Environmental Assessment Model (GLEAM)
      Available formats
      ×
Copyright
Corresponding author
E-mail: michael.macleod@sruc.ac.uk
References
Hide All
Alexandratos, N. and Bruinsma, J 2012. World agriculture towards 2030/2050: the 2012 revision. ESA working paper no. 12-03. Food and Agriculture Organization of the United Nations (FAO), Rome.
Ardente, F and Cellura, M 2012. Economic allocation in life cycle assessment. Journal of Industrial Ecology 16, 387398.
Bajželj, B, Richards, KS, Allwood, JM, Smith, P, Dennis, JS, Curmi, E and Gilligan, CA 2014. Importance of food-demand management for climate mitigation. Nature Climate Change 4, 924929.
Bell, MJ, Hinton, N, Rees, RM, Cloy, JM, Topp, CFE, Cardenas, L, Scott, T, Webster, C, Whitmore, A, Williams, J, Balshaw, H, Paine, F and Chadwick, D 2015. Nitrous oxide emissions from fertilised UK arable soils: fluxes, emission factors and mitigation. Agriculture, Ecosystems and Environment 212, 134147.
Berglund, M, Cederberg, C, Clason, C and och Lars Törner, MH 2009. Jordbrukets klimatpåverkan – underlag för att beräkna växthusgasutsläpp på gårdsnivå och nulägesanalyser av exempelgårdar. Delrapport i JoKer-proJeKtet. Hushållningssällskapet, Halland.
British Standards Institution (BSI) 2008. PAS 2050:2008. Specification for the assessment of the life cycle greenhouse gas emissions of goods and services. BSI, London, UK.
Britz, W and Witzke, P 2008. CAPRI model documentation 2008: version 2. Institute for Food and Resource Economics, University of Bonn, Bonn.
Defra 2006. Nitrogen and phosphorus output of livestock excreta: Final report, Defra project WT0715NVZ. Defra, London, UK.
EDGAR 2012. Emissions Database for Global Atmospheric Research (EDGAR). Retrieved on 2 September 2013 from http://edgar.jrc.ec.europa.eu.
EPA 2012. US Environmental Protection Agency Global Emissions Database. Retrieved on 2 September 2013 from www.epa.gov/climatechange/ghgemissions/global.html.
Food and Agriculture Organization of the United Nations (FAO) 2017. Global Livestock Environmental Assessment Model Version 2.0 Model description revision 6, May 2017. FAO, Rome.
Gerber, PJ, Opio, C, Vellinga, T, Henderson, B and Steinfeld, H 2010. Greenhouse gas emissions from the dairy sector – a life cycle assessment. Food and Agriculture Organization of the United Nations (FAO), Rome.
Gerber, PJ, Steinfeld, H, Henderson, B, Mottet, A, Opio, C, Dijkman, J, Falcucci, A and Tempio, G 2013. Tackling climate change through livestock – a global assessment of emissions and mitigation opportunities. Food and Agriculture Organization of the United Nations (FAO), Rome.
Haberl, H, Erb, K-H, Krausmann, F, Gaube, V, Bondeau, A, Plutzar, C, Gingrich, S, Lucht, W and Fischer-Kowalski, M 2007. Quantifying and mapping the global human appropriation of net primary production in Earth’s terrestrial ecosystem. Proceedings of the National Academy of Sciences of the United States of America 104, 1294212947.
Havlík, P, Valin, H, Herrero, M, Obersteiner, M, Schmid, E, Rufino, MC, Mosnier, A, Thornton, PK, Böttcher, H, Conant, RT, Frank, S, Fritz, S, Fuss, S, Kraxner, F and Notenbaert, A 2014. Climate change mitigation through livestock system transitions. Proceedings of the National Academy of Science of the United States of America 111, 37093714.
Henderson, B, Falcucci, A, Mottet, A, Early, L, Werner, B, Steinfeld, H and Gerber, P 2017. Marginal costs of abating greenhouse gases in the global ruminant livestock sector. Mitigation and Adaptation Strategies for Global Change 22, 199224.
Herrero, M and Thornton, PK 2013. Livestock and global change: emerging issues for sustainable food systems. Proceedings of the National Academy of Sciences of the United States of America 110, 2087820881.
Hertel, TW 1999. Global trade analysis: modeling and applications. Cambridge University Press, Cambridge, UK.
IPCC 2006. IPCC guidelines for national greenhouse gas inventories. Prepared by the National Greenhouse Gas Inventories Programme (eds. HS Eggleston, L Buendia, K Miwa, T Ngara and K Tanabe). IPCC, Kanagawa, Japan.
Jenssen, TK and Kongshaug, G 2003. Energy consumption and greenhouse gas emissions in fertiliser production. Proceedings no. 509. The International Fertilizer Society, York, UK.
Jørgensen, H, Theil, PK, Knudsen, EBK 2011. Enteric methane emissions from pigs. In Planet earth 2011 – global warming challenges and opportunities for policy and practice. Published online by InTech. http://www.intechopen.com/books/planet-earth-2011-global-warming-challenges-and-opportunities-for-policy-and-practice.
Kim, D-G, Thomas, AD, Pelster, D, Rosenstock, TS and Sanz-Cobena, A 2016. Greenhouse gas emissions from natural ecosystems and agricultural lands in sub-Saharan Africa: synthesis of available data and suggestions for further research. Biogeosciences 13, 47894809.
Kool, A, Marinussen, M and Blonk, H 2012. LCI data for the calculation tool Feedprint for greenhouse gas emissions of feed production and utilization GHG Emissions of N, P and K fertilizer production. Blonk Consultants, Gouda, The Netherlands.
Lamb, A, Green, R, Bateman, I, Broadmeadow, M, Bruce, T., Burney, J, Carey, P, Chadwick, D, Crane, E, Field, R, Goulding, K, Griffiths, H, Hastings, A, Kasoar, T, Kindred, D, Phalan, B, Pickett, J, Smith, P, Wall, E, zu Ermgassen, EKHJ and Balmford, A 2016. The potential for land sparing to offset greenhouse gas emissions from agriculture. Nature Climate Change 6, 488492.
Leip, A, Billen, G, Garnier, J, Grizzetti, B, Lassaletta, L, Reis, S, Simpson, D, Sutton, MA, de Vries, W, Weiss, F and Westhoek, H 2015. Impacts of European livestock production: nitrogen, sulphur, phosphorus and greenhouse gas emissions, land-use, water eutrophication and biodiversity. Environmental Research Letter 10, 115004.
Lesschen, JP, van den Berg, M, Westhoek, HJ, Witzke, HP and Oenema, O 2011. Greenhouse gas emission profiles of European livestock sectors. Animal Feed Science and Technology 166–167, 1628.
MacLeod, M, Gerber, P, Vellinga, T, Opio, C, Falcucci, A, Tempio, G, Henderson, B, Mottet, A. and Steinfeld, H 2013. Greenhouse Gas Emissions from Pig and Chicken Supply Chains: A Global Life Cycle Assessment. Food and Agriculture Organization of the United Nations (FAO), Rome.
Mottet, A, Henderson, BB, Opio, C, Falcucci, A, Tempio, G, Silvestri, S, Chesterman, S and Gerber, PJ 2016. Climate change mitigation and productivity gains in livestock supply chains: insights from regional case studies. Regional Environmental Change 17, 113.
Nielsen, N, Jørgensen, M and Bahrndorff, S 2011. Greenhouse gas emission from the Danish broiler production estimated via LCA methodology. AgroTech/Knowledge Centre for Agriculture, Aarhus, Denmark.
NRC 1998. Nutrient requirements of swine, 10th revised edition. National Academy Press, Washington, DC, USA.
Opio, C, Gerber, P, Vellinga, T, MacLeod, M, Falcucci, A, Henderson, B, Mottet, A, Tempio, G and Steinfeld, H 2013. Greenhouse gas emissions from ruminant supply chains: a global life cycle assessment. Food and Agriculture Organization of the United Nations (FAO), Rome.
Powell, JM, MacLeod, M, Vellinga, TV, Opio, C, Falcucci, A, Tempio, G, Steinfeld, H and Gerber, P 2013. Feed–milk–manure nitrogen relationships in global dairy production systems. Livestock Science 152, 261272.
Prudêncio da Silva, V, van der Werf, HMG and Soares, SR 2010. LCA of French and Brazilian broiler poultry production scenarios. XIIIth European Poultry Conference, 23–27 August 2010, Tours, France.
Robinson, TP, Wint, GRW, Conchedda, G, Van Boeckel, TP, Ercoli, V and Palamara, E 2014. Mapping the global distribution of livestock. PLoS ONE 9, e96084.
Rosegrant, MW, Ringler, C, Msangi, S, Sulser, TB, Zhu, T and Cline, SA 2008. International model for policy analysis of agricultural commodities and trade (IMPACT): model description. International Food Policy Research Institute, Washington, DC, USA.
Rosenstock, TS, Rufino, MC, Butterbach-Bahl, K and Wollenberg, E 2013. Toward a protocol for quantifying the greenhouse gas balance and identifying mitigation options in smallholder farming systems. Environmental Research Letters 8.
Sakomura, NK 2004. Modelling energy utilization in broiler breeders, laying hens and broilers, Brazilian. Journal of Poultry Science/Revista Brasileira de Ciência Avícola 6, 111.
Shepherd, A, Yan, X, Nayak, D, Newbold, J, Moran, D, Dhanoa, MS, Goulding, K, Smith, P and Cardenas, LM 2015. Disaggregated N2O emission factors in China based on cropping parameters create a robust approach to the IPCC Tier 2 methodology. Atmospheric Environment 122, 272281.
Smith, P, Bustamante, M, Ahammad, H, Clark, H, Dong, H, Elsiddig, EA, Haberl, H, Harper, R, House, J, Jafari, M, Masera, O, Mbow, C, Ravindranath, NH, Rice, CW, Robledo Abad, C, Romanovskaya, A, Sperling, F and Tubiello, F 2014. Agriculture, Forestry and Other Land Use (AFOLU). In Climate change 2014: mitigation of climate change. Contribution of Working Group III to the fifth assessment report of the Intergovernmental Panel on Climate Change (eds. O Edenhofer, R Pichs-Madruga, Y Sokona, E Farahani, S Kadner, K Seyboth, A Adler, I Baum, S Brunner, P Eickemeier, B Kriemann, J Savolainen, S Schlömer, C von Stechow, T Zwickel and JC Minx). Cambridge University Press, Cambridge, UK and New York, NY, USA.
Smith, P, Martino, D, Cai, Z, Gwary, D, Janzen, H, Kumar, P, McCarl, B, Ogle, S, O’Mara, F, Rice, C, Scholes, B and Sirotenko, O 2007. Agriculture. In Climate change 2007: mitigation. Contribution of Working Group III to the fourth assessment report of the Intergovernmental Panel on Climate Change (eds. B Metz, OR Davidson, PR Bosch, R Dave and LA Meyer). Cambridge University Press, Cambridge, UK and New York, NY, USA.
Stehfest, E, van Vuuren, DP, Kram, T, Bouwman, L, Alkemade, R, Bakkenes, M, Biemans, H, Bouwman, A, den Elzen, M, Janse, P, van Minnen, J, Muller, C and Prins, A 2014. IMAGE by IMAGE 3.0. Netherlands Environmental Assessment Agency, The Hague, The Netherlands.
Steinfeld, H, Gerber, PJ, Wassenaar, T, Castel, V, Rosales, M and de Haan, C 2006. Livestock’s long shadow: environmental issues and options. Food and Agriculture Organization of the United Nations (FAO), Rome.
Tubiello, FN, Salvatore, M, Rossi, S, Ferrara, A, Fitton, N and Smith, P 2013. The FAOSTAT database of greenhouse gas emissions from agriculture. Environmental Research Letters 8.
Velthof, GL, Oudendag, D, Witzke, HR, Asman, WAH, Klimont, Z and Oenema, O 2009. Integrated assessment of N losses from agriculture in EU-27 using MITERRA-EUROPE. Journal of Environmental Quality 38, 402417.
WRI 2013. CAIT 2.0 WRI’s climate data explorer. Retrieved on 3 September 2013 from http://cait2.wri.org/wri#.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

animal
  • ISSN: 1751-7311
  • EISSN: 1751-732X
  • URL: /core/journals/animal
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Full text views

Total number of HTML views: 70
Total number of PDF views: 441 *
Loading metrics...

Abstract views

Total abstract views: 1055 *
Loading metrics...

* Views captured on Cambridge Core between 9th August 2017 - 21st August 2018. This data will be updated every 24 hours.