Skip to main content
×
×
Home

Pig acute-phase protein levels after stress induced by changes in the pattern of food administration

  • C. Piñeiro (a1), M. Piñeiro (a1), J. Morales (a1), R. Carpintero (a2), F. M. Campbell (a3), P. D. Eckersall (a3), M. J. M. Toussaint (a4), M. A. Alava (a2) and F. Lampreave  (a2)...
Abstract

A total of 240 pigs, 74 days old, half boars and half females, were included in a trial designed to assess the effect of the stress caused by changes in the pattern of food administration on the concentration of acute phase proteins (APP) and productive performance parameters. Half of the animals (pigs fed ad libitum, AL group) had free access to feed, while the rest were fed following a disorderly pattern (DIS group), in which animals had alternating periods of free access to feed and periods of no feeding, when food was removed from the feeder. The periods of free access to feed (two daily periods of 2-h duration) were randomly assigned, and varied from day to day. Total feed supplied per day was identical in both groups, and exceeded the minimal amount required for animals of these ages. Pen feed intake, individual body weights and the main positive pig APP pig major acute phase protein (Pig-MAP), haptoglobin, serum amyloid A (SAA), C-reactive protein (CRP), and the negative APP apolipoprotein A-I (ApoA-I) and transtherytin were determined every 2 weeks during the period 76 to 116 days of age. Animals fed ad libitum had better average daily gain (ADG) than DIS animals in the whole experimental period (P < 0.01) but the differences in ADG were only produced in the two first experimental sub-periods (60 to 74 and 74 to 116 days of age), suggesting that the stress diminished when the animals get used to the DIS feeding. Interestingly differences in ADG between DIS and AL pigs were due to males, whereas no differences were observed between females. The same differences observed for ADG were found for APP. DIS males had higher Pig-MAP concentration than AL males at 74 and 116 days of age, lower ApoA-I concentration at 74 days of age and higher haptoglobin and CRP concentration at 116 days of age (P < 0.05). The results obtained in this trial show an inverse relationship between weight gain and APP levels, and suggest that APP may be biomarkers for the evaluation of distress and welfare in pigs.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Pig acute-phase protein levels after stress induced by changes in the pattern of food administration
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Pig acute-phase protein levels after stress induced by changes in the pattern of food administration
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Pig acute-phase protein levels after stress induced by changes in the pattern of food administration
      Available formats
      ×
Copyright
Corresponding author
*matildepineiro@pigchamp-pro.com
References
Hide All
Alsemgeest, SP, Kalsbeek, HC, Wensing, T, Koeman, JP, van Ederen, AM and Gruys, E 1995. Influence of physical stress on the plasma concentration of serum amyloid-A (SAA) and haptoglobin (Hp) in calves. The Veterinary Quarterly 17, 9-12.
Baumann, H and Gauldie, J 1994. The acute phase response. Immunology Today 15, 74-80.
Black, PH 2002. Stress and the inflammatory response: a review of neurogenic inflammation. Brain Behaviour and Immunity 16, 622-653.
Campbell, F, Waterston, M, Andresen, LO, Sorensen, NS, Heegaard, PMH and Eckersall, PD 2005. The negative acute phase response of serum transthyretin following Streptococcus suis infection in the pig. Veterinary Research 36, 657-664.
Carpintero, R, Piñeiro, M, Andrés, M, Iturralde, M, Alava, MA, Heegaard, PMH, Jobert, JL, Madec, F and Lampreave, F 2005. The concentration of apolipoprotein A-I decreases during experimentally induced acute processes in pigs. Infection and Immunity 73, 3184-3187.
Chrousos, GP and Gold, PW 1992. The concepts of stress and stress system disorders. Overview of physical and behavioural homeostasis. The journal of the American Medical Association 267, 1244-1252.
Clapperton, M, Bishop, SC, Cameron, ND and Glass, EJ 2005. Association of acute phase protein levels with growth performance and with selection for growth performance in Large White pigs. Animal Science 81, 213-220.
Dantzer, R and Mormede, P 1983. Stress in farm animals: a need for re-evaluation. Journal of Animal Science 57, 6-18.
De Groot, J, Ruis, MAW, Scholten, JW, Koolhaas, JM and Boersma, WJA 2001. Long-term effects of social stress on antiviral immunity in pigs. Physiology and Behaviour 73, 145-158.
Deak, T, Meriwether, JL, Fleshner, M, Spencer, RL, Abouhamze, A, Moldawer, LL, Grahn, RE, Watkins, LR and Maier, SF 1997. Evidence that brief stress may induce the acute phase response in rats. American Journal of Physiology 273, R1998-2004.
Dritz, SS, Owen, KQ, Goodband, RD, Nelssen, JL, Tokach, MD, Chengappa, MM and Blecha, F 1996. Influence of lipopolisaccharide-induced immune challenge and diet complexity on growth performance and acute-phase protein production in segregated early-weaned pigs. Journal of Animal Science 74, 1620-1628.
Eurell, TE, Bane, DP, Hall, WF and Schaeffer, DJ 1992. Serum haptoglobin concentration as an indicator of weight gain in pigs. Canadian Journal of Veterinary Research 56, 6-9.
Gabay, C and Kushner, I 1999. Acute-phase proteins and other systemic responses to inflammation. The New England Journal of Medicine 340, 448-454.
Giersing, M and Andersson, A 1998. How does former acquaintance affect aggressive behaviour in repeatedly mixed male and female pigs? Applied Animal Behaviour Science 59, 297-306.
González-Ramón, N, Alava, MA, Sarsa, JA, Piñeiro, M, Escartín, A, García-Gil, A, Lampreave, F and Piñeiro, A 1995. The major acute phase serum protein in pigs is homologous to human plasma kallikrein sensitive PK-120. FEBS Letters 371, 227-230.
Heegaard, PM, Klausen, J, Nielsen, JP, González-Ramón, N, Piñeiro, M, Lampreave, F and Alava, MA 1998. The porcine acute phase response to infection with Actinobacillus pleuropneumoniae. Haptoglobin, C-reactive protein, major acute phase protein and serum amyloid A protein are sensitive indicators of infection. Comparative Biochemistry and Physiology B 119, 365-373.
Hicks, TA, McGlone, JJ, Whisnant, CS, Kattesh, HG and Norman, RL 1998. Behavioral, endocrine, immune, and performance measures for pigs exposed to acute stress. Journal of Animal Science 76, 474-483.
Hyun, Y, Ellis, M and Johnson, RW 1998a. Effects of feeder type, space allowance, and mixing on the growth performance and feed intake pattern of growing pigs. Journal of Animal Science 76, 2771-2778.
Hyun, Y, Ellis, M, Riskowski, G and Johnson, RW 1998b. Growth performance of pigs subjected to multiple concurrent environmental stressors. Journal of Animal Science 76, 721-727.
Hulten, C, Johansson, E, Fossum, C and Wallgren, P 2003. Interleukin 6, serum amyloid A and haptoglobin as markers of treatment efficacy in pigs experimentally infected with Actinobacillus pleuropneumoniae. Veterinary Microbiology 95, 75-89.
Jensen, KH, Pedersen, LJ, Nielsen, EK, Heller, KE, Ladewig, J and Jorgensen, E 1996. Intermittent stress in pigs: effects on behavior, pituitary-adrenocortical axis, growth, and gastric ulceration. Physiology and Behaviour 59, 741-748.
Johnson, RW 1997. Inhibition of growth by pro-inflammatory cytokines: an integrated view. Journal of Animal Science 75, 1244-1255.
Kajantie, E and Phillips, DI 2005. The effects of sex and hormonal status on the physiological response to acute psychosocial stress. Psychoneuroendocrinology. In press. doi:10.1016/j.psyneuen.2005.07.002.
Kudielka, BM and Kirschbaum, C 2005. Sex differences in HPA axis responses to stress: a review. Biological Psychology 69, 113-132.
Lampreave, F, Gonzalez-Ramon, N, Martinez-Ayensa, S, Hernandez, MA, Lorenzo, HK, Garcia-Gil, A and Pineiro, A 1994. Characterization of the acute phase serum protein response in pigs. Electrophoresis 15, 672-676.
Le Bellego, L, Van Milgen, J and Noblet, J 2002. Effect of high temperature and low-protein diets on the performance of growing-finishing pigs. Journal of Animal Science 80, 691-701.
Mancini, G, Carbonara, AO and Heremans, JF 1965. Immunochemical quantitation of antigens by single radial immunodiffusion. Immunochemistry 2, 235-254.
Moberg, G 1987. Problems in defining stress and distress in animals. Journal of the American Veterinary Medical Association 191, 1207-1211.
Morimoto, A, Watanabe, T, Myogin, T and Murakami, N 1987. Restraint induced stress elicits acute phase responses in rabbits. Pflügers Archiv-European Journal of Physiology 410, 554-556.
Murata, H, Shimada, N and Yoshioka, M 2004. Current research on acute phase proteins in veterinary diagnosis: an overview. The Veterinary Journal 168, 28-40.
Nukina, H, Sudo, N, Aiba, Y, Oyama, N, Koga, Y and Kubo, C 2001. Restraint stress elevates the plasma interleukin-6 levels in germ-free mice. Journal of Neuroimmunology 115, 46-52.
Piñeiro, C, Morales, J, Piñeiro, M, Lampreave, F and Mateos, GG 2004. Effects of induced mixing and pen size on performance and serum concentration of acute phase proteins in growing pigs. Journal of Animal Science 82, (suppl. 1) 505(abstr.).
Piñeiro, M, Piñeiro, C, Carpintero, R, Morales, J, Campbell, FM, Eckersall, PD, Toussaint, MJM and Lampreave, F 2006. Characterisation of the pig acute phase protein response to road transport. The Veterinary Journal (In press).
Renard, GM, Suarez, M-M, Levin, GM and Rivarola, MA 2005. Sex differences in rats: effects of chronic stress on sympathetic system and anxiety. Physiology and Behaviour 85, 363-369.
Ruis, MA, Te Brake, JH, Engel, B, Ekkel, ED, Buist, WG, Blokhuis, HJ and Koolhaas, JM 1997. The circadian rhythm of salivary cortisol in growing pigs: effects of age, gender and stress. Physiology and Behaviour 62, 623-630.
Schrader, L and Ladewig, J 1999. Temporal differences in the responses of the pituitary adrenocortical axis, the sympathoadrenomedullar axis, heart rate, and behaviour to a daily repeated stressor in domestic pigs. Physiology and Behaviour 66, 775-783.
Spurlock, ME 1997. Regulation of metabolism and growth during immune challenge: an overview of citokyne function. Journal of Animal Science 75, 1773-1783.
Stookey, JM and Gonyou, HW 1994. The effects of regrouping on behavioral and production parameters in finishing swine. Journal of Animal Science 72, 2804-2811.
Turner, AI, Canny, BJ, Hobbs, RJ, Bond, JD, Clarke, IJ and Tillbrook, AJ 2002. Influence of sex and gonadal status of sheep on cortisol secretion in response to ACTH and on cortisol and LH secretion in response to stress: importance of different stressors. Journal of Endocrinology 173, 113-122.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

animal
  • ISSN: 1751-7311
  • EISSN: 1751-732X
  • URL: /core/journals/animal
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed