Skip to main content Accessibility help
×
Home

Repeatability of traits for characterizing feed intake patterns in dairy goats: a basis for phenotyping in the precision farming context

  • S. Giger-Reverdin (a1), C. Duvaux-Ponter (a1), D. Sauvant (a1) and N. C. Friggens (a1)

Abstract

In ruminants, feeding behaviour variables are parameters involved in feed efficiency that show variation among individuals. This study aimed to evaluate during the first two production cycles in ruminants the repeatability of feed intake pattern, which is an important aspect of feeding behaviour. Thirty-five dairy goats from Alpine or Saanen breeds were housed in individual pens at four periods (end of first gestation, middle of first and second lactations and middle of second gestation which is also the end of first lactation) and fed a total mixed ration (TMR) ad libitum. Individual cumulative dry matter intake (DMI) was automatically measured every 2 min during the last 4 days of each period. Feed intake pattern was characterized by several measures related to the quantity of feed eaten or to the rate of intake during the 15 h following the afternoon feed delivery. Two main methods were used: modelling cumulative DMI evolution by an exponential model or by a segmentation-clustering method. The goat ability to sort against dietary fibre was also evaluated. There was a very good repeatability of the aggregate measures between days within a period for a given goat estimated by the day effect within breed and goat, tested on the residual variance (P > 0.95). The correlations between periods were the highest between the second and either the third or fourth periods. With increasing age, goats sorted more against the fibrous part of the TMR and increased their initial rate of intake. Alpine goats ate more slowly than Saanen goats but ate during a longer duration. Principal component analysis (PCA) was performed on all the aggregate measures of feed intake patterns. The factor score plots generated by the PCA highlighted the opposition between the different measures of feed intake patterns and the sorting behaviour. The projection of the animals on the scoring plots showed a breed effect and that there was a continuum for the feed intake pattern of goats. In conclusion, this study showed that the feed intake pattern was highly repeatable for an animal in a given period and between periods. This means that phenotyping goats in a younger age might be of interest, either to select them on feeding behaviour and choose preferentially the slow eaters or to adapt the quantity offered and restrict feed delivery to the fast eaters in order to increase feed efficiency and welfare by limiting the occurrence of acidosis, for example.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Repeatability of traits for characterizing feed intake patterns in dairy goats: a basis for phenotyping in the precision farming context
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Repeatability of traits for characterizing feed intake patterns in dairy goats: a basis for phenotyping in the precision farming context
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Repeatability of traits for characterizing feed intake patterns in dairy goats: a basis for phenotyping in the precision farming context
      Available formats
      ×

Copyright

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Corresponding author

References

Hide All
Baumont, R, Cohen-Salmon, D, Prache, S and Sauvant, D 2004. A mechanistic model of intake and grazing behaviour in sheep integrating sward architecture and animal decisions. Animal Feed Science and Technology 112, 528.
Baumont, R, Seguier, N and Dulphy, JP 1990. Rumen fill, forage palatability and alimentary behaviour in sheep. Journal of Agricultural Science 115, 277284.
Beauchemin, KA and Rode, LM 1994. Compressed baled alfalfa hay for primiparous and multiparous dairy cows. Journal of Dairy Science 77, 10031012.
Brown-Brandl, TM and Eigenberg, RA 2011. Development of a livestock feeding behavior monitoring system. Transactions of the Asabe 54, 19131920.
Brown, MS, Krehbiel, CR, Galyean, ML, Remmenga, MD, Peters, JP, Hibbard, B, Robinson, J and Moseley, WM 2000. Evaluation of models of acute and subacute acidosis on dry matter intake, ruminal fermentation, blood chemistry, and endocrine profiles of beef steers. Journal of Animal Science 78, 31553168.
Burt, AWA 1957. The effect of variation in nutrient intake upon the yield and composition of milk. II. Factors affecting rate of eating roughage and responses to an increase in the amount of concentrates fed. Journal of Dairy Research 24, 296315.
Campling, RC and Morgan, CA 1981. Eating behaviour of housed dairy cows - a review. Dairy Science Abstracts 43, 5763.
Conrad, HR, Pratt, AD and Hibbs, JW 1964. Regulation of feed intake in dairy cows. I. Change in importance of physical and physiological factors with increasing digestibility. Journal of Dairy Science 47, 5462.
Daovy, K, Preston, TR and Ledin, I 2008. Selective behaviour of goats offered different tropical foliages. Livestock Research for Rural Development 20, 18.
Desnoyers, M, Giger-Reverdin, S, Sauvant, D and Duvaux-Ponter, C 2011. The use of a multivariate analysis to study between-goat variability in feeding behavior and associated rumen pH patterns. Journal of Dairy Science 94, 842852.
Dürst, B, Senn, M and Langhans, W 1993. Eating patterns of lactating dairy cows of three different breeds fed grass ad lib. Physiology & Behavior 54, 625631.
Friggens, NC, Nielsen, BL, Kyriazakis, I, Tolkamp, BJ and Emmans, GC 1998. Effects of feed composition and stage of lactation on the short-term feeding behavior of dairy cows. Journal of Dairy Science 81, 32683277.
Gao, X and Oba, M 2014. Relationship of severity of subacute ruminal acidosis to rumen fermentation, chewing activities, sorting behavior, and milk production in lactating dairy cows fed a high-grain diet. Journal of Dairy Science 97, 30063016.
Giger-Reverdin, S, Desnoyers, M, Duvaux-Ponter, C and Sauvant, D 2010. Modelling within-day variability in feeding behaviour in relation to rumen pH: application to dairy goats receiving an acidogenic diet. In Proceedings of the 7th International Workshop on Modelling Nutrient Digestion and Utilisation in Farm Animals, 10–12 September 2009, Paris, France (ed. Sauvant, D, Van Milgen, J, Faverdin, P and Friggens, N), pp. 121–129. Wageningen Academic Publishers, Wageningen, The Netherlands.
Giger-Reverdin, S, Lebarbier, E, Duvaux-Ponter, C and Desnoyers, M 2012. A new segmentation-clustering method to analyse feeding behaviour of ruminants from within day cumulative intake patterns. Computers and Electronics in Agriculture 83, 109116.
Giger-Reverdin, S and Sauvant, D 2016. Study of the between-goat variation in feed efficiency with a high-concentrate diet. Options Méditerranéennes. Série A, Séminaires Méditerranéens 115, 549552.
Giger, S, Thivend, P, Sauvant, D, Dorléans, M and Journaix, P 1987. Etude de l’influence préalable de différents traitements amylolytiques sur la teneur en résidu NDF d’aliments du bétail. (Effect of different amylolytic pretreatments on NDF content in feedstuffs). Annales de Zootechnie 36, 3948.
Hosseinkhani, A, DeVries, TJ, Proudfoot, KL, Valizadeh, R, Veira, DM and von Keyserlingk, MAG 2008. The effects of feed bunk competition on the feed sorting behavior of close-up dry cows. Journal of Dairy Science 91, 11151121.
Huhtanen, P, Cabezas-Garcia, EH, Krizsan, SJ and Shingfield, KJ 2015. Evaluation of between-cow variation in milk urea and rumen ammonia nitrogen concentrations and the association with nitrogen utilization and diet digestibility in lactating cows. Journal of Dairy Science 98, 31823196.
International Organization for Standardization (ISO) 1983. Animal Feedingstuffs. ISO 6496. Determination of moisture and other volatile matter content. ISO, Genève, Switzerland.
Jarrige, R, Dulphy, JP, Faverdin, P, Baumont, R and Demarquilly, C 1995. Activités d’ingestion et de rumination. In Nutrition des ruminants domestiques. Ingestion et digestion. (Nutrition of domestic ruminants: ingestion and digestion) (ed. Jarrige, R, Ruckebusch, Y, Demarquilly, C, Farce, MH and Journet, M), pp. 123181. Institut National de la Recherche Agronomique (INRA), Paris, France.
Leonardi, C and Armentano, LE 2003. Effect of quantity, quality, and length of alfalfa hay on selective consumption by dairy cows. Journal of Dairy Science 86, 557564.
Morand-Fehr, P, Owen, E and Giger-Reverdin, S 1991. Feeding behaviour of goats at the trough. In Goat nutrition (ed. Morand-Fehr, P), pp. 312. Pudoc, Wageningen, The Netherlands.
Neave, HW, Lomb, J, von Keyserlingk, MAG, Behnam-Shabahang, A and Weary, DM 2017. Parity differences in the behavior of transition dairy cows. Journal of Dairy Science 100, 548561.
Nielsen, BL 1999. On the interpretation of feeding behaviour measures and the use of feeding rate as an indicator of social constraint. Applied Animal Behaviour Science 63, 7991.
Phocas, F, Agabriel, J, Dupont-Nivet, M, Geurden, I, Médale, F, Mignon-Grasteau, S, Gilbert, H and Dourmad, JY 2014. Le phénotypage de l’efficacité alimentaire et de ses composantes, une nécessité pour accroître l’efficience des productions animales. (Phenotyping for feed efficiency and its components, a need to improve the efficiency of livestock production). INRA Productions Animales 27, 235248.
SAS 2006. SAS/STAT guide for personal computers, version 9.1.3. SAS Institute, Inc, Cary, NC, USA.
Sauvant, D, Baumont, R and Faverdin, P 1996. Development of a mechanistic model of intake and chewing activities of sheep. Journal of Animal Science 74, 27852802.
Sebata, A and Ndlovu, LR 2010. Effect of leaf size, thorn density and leaf accessibility on instantaneous intake rates of five woody species browsed by Matebele goats (Capra hircus L) in a semi-arid savanna, Zimbabwe. Journal of Arid Environments 74, 12811286.
Senn, M, Dürst, B, Kaufmann, A and Langhans, W 1995. Feeding patterns of lactating cows of three different breeds fed hay, corn silage, and grass silage. Physiology & Behavior 58, 229236.
Serment, A and Giger-Reverdin, S 2012. Effect of the percentage of concentrate on intake pattern in mid-lactation goats. Applied Animal Behaviour Science 141, 130138.
Thorup, VM, Nielsen, BL, Robert, P-E, Giger-Reverdin, S, Konka, J, Michie, C and Friggens, N 2016. Lameness affects cow feeding but not rumination behavior as characterized from sensor data. Frontiers in Veterinary Science 3, art 37, 111.
Van Soest, PJ and Wine, RH 1967. Use of detergents in the analysis of fibrous feeds. IV. Determination of plant cell-wall constituents. Journal of the Association of Official Analytical Chemists 50, 5055.
Vasilatos, R and Wangsness, PJ 1980. Feeding behaviour of lactating dairy cows as measured by time-lapse photography. Journal of Dairy Science 63, 412416.

Keywords

Type Description Title
WORD
Supplementary materials

Giger-Reverdin et al. supplementary material
Figure S1

 Word (20 KB)
20 KB
WORD
Supplementary materials

Giger-Reverdin et al. supplementary material
Table S1

 Word (18 KB)
18 KB

Repeatability of traits for characterizing feed intake patterns in dairy goats: a basis for phenotyping in the precision farming context

  • S. Giger-Reverdin (a1), C. Duvaux-Ponter (a1), D. Sauvant (a1) and N. C. Friggens (a1)

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed