Skip to main content Accessibility help
×
×
Home

Review: New considerations to refine breeding objectives of dairy cows for increasing robustness and sustainability of grass-based milk production systems

  • J. R. Roche (a1) (a2), D. P. Berry (a3), L. Delaby (a4), P. G. Dillon (a3), B. Horan (a3), K. A. Macdonald (a1) and M. Neal (a1)...

Abstract

Although food from grazed animals is increasingly sought by consumers because of perceived animal welfare advantages, grazing systems provide the farmer and the animal with unique challenges. The system is dependent almost daily on the climate for feed supply, with the importation of large amounts of feed from off farm, and associated labour and mechanisation costs, sometimes reducing economic viability. Furthermore, the cow may have to walk long distances and be able to harvest feed efficiently in a highly competitive environment because of the need for high levels of pasture utilisation. She must, also, be: (1) highly fertile, with a requirement for pregnancy within ~80 days post-calving; (2) ‘easy care’, because of the need for the management of large herds with limited labour; (3) able to walk long distances; and (4) robust to changes in feed supply and quality, so that short-term nutritional insults do not unduly influence her production and reproduction cycles. These are very different and are in addition to demands placed on cows in housed systems offered pre-made mixed rations. Furthermore, additional demands in environmental sustainability and animal welfare, in conjunction with the need for greater system-level biological efficiency (i.e. ‘sustainable intensification’), will add to the ‘robustness’ requirements of cows in the future. Increasingly, there is evidence that certain genotypes of cows perform better or worse in grazing systems, indicating a genotype×environment interaction. This has led to the development of tailored breeding objectives within countries for important heritable traits to maximise the profitability and sustainability of their production system. To date, these breeding objectives have focussed on the more easily measured traits and those of highest relative economic importance. In the future, there will be greater emphasis on more difficult to measure traits that are important to the quality of life of the animal in each production system and to reduce the system’s environmental footprint.

Copyright

Corresponding author

Footnotes

Hide All
a

John Roche was the invited contributor to the 2018 International Symposium on Nutrition of Herbivores. Other authors are listed alphabetically.

Footnotes

References

Hide All
Bargo, F, Muller, LD, Kolver, ES and Delahoy, JE 2003. Invited review: production and digestion of supplemented dairy cows on pasture. Journal of Dairy Science 86, 142.
Bedere, N, Delaby, L, Ducrocq, V, Leurent-Colette, S and Disenhaus, C 2015. Resumption of luteal activity in first lactation cows is mainly affected by genetic characteristics. 66th Annual Meeting of the European Federation of Animal Science (EAAP) 21, 276.
Bedere, N, Delaby, L, Leurent-Colette, S and Disenhaus, C 2016. The cow for the system: limiting milk yield and body condition loss to ensure reproduction on time TT. 67th Annual Meeting of the European Federation of Animal Science (EAAP) 22, 630.
Bedere, N, Disenhaus, C, Ducrocq, V, Leurent-Colette, S and Delaby, L 2017a. Ability of dairy cows to ensure pregnancy according to breed and genetic merit for production traits under contrasted pasture-based systems. Journal of Dairy Science 100, 28122827.
Bedere, N, Disenhaus, C, Ducrocq, V, Leurent-Colette, S and Delaby, L 2017b. Ability of dairy cows to be inseminated according to breed and genetic merit for production traits under contrasting pasture-based feeding systems. Animal 11, 826835.
Berry, DP 2015. Breeding the dairy cow of the future: what do we need? Animal Production Science 55, 823837.
Berry, DP 2018. Breeding a better cow – will she be adaptable? Journal of Dairy Science 101, 36653685.
Berry, DP, Kearney, JF, Twomey, K and Evans, RD 2012. Genetics of reproductive performance in seasonal calving dairy cattle production systems. Irish Journal of Agricultural and Food Research 52, 116.
Berry, DP, Shalloo, L, Cromie, AR, Veerkamp, RF, Dillon, P, Amer, PR, Kearney, JF, Evans, RD and Wickham, B 2007. The economic breeding index: a generation on. Technical report to the Irish Cattle Breeding Federation, pp. 1–50. Retrieved on 15 February 2017 from http://www.icbf.com/publications/files/economic_breeding_index.pdf.
Berry, DP, Wall, E and Pryce, JE 2014. Genetics and genomics of reproductive performance in dairy and beef cattle. Animal 8, 105121.
Bommarco, R, Kleijn, D and Potts, SG 2013. Ecological intensification: harnessing ecosystem services for food security. Trends in Ecology and Evolution 28, 230238.
Buckley, F, Dillon, P, Rath, M and Veerkamp, RF 2000. The relationship between genetic merit for yield and live weight, condition score, and energy balance of spring calving holstein friesian dairy cows on grass based systems of milk production. Journal of Dairy Science 83, 18781886.
Carter, AH 1964. How important is dairy merit? Proceedings of the Ruakura Farmers’ Conference 15, 188203.
DairyCo 2013. Managing costs – key findings of the Milkbench+ dairy benchmarking programme regarding the efficiency of dairy production in Britain. Animal & Horticulture Development Board, Warwickshire, UK.
Delaby, L, Buckley, F, McHugh, N and Blanc, F 2018. Resilient animals for grass based production systems. In Proceedings of the European Grassland Federation, p. in press. Cork, Ireland.
Delaby, L, Faverdin, P, Michel, G, Disenhaus, C and Peyraud, JL 2009. Effect of different feeding strategies on lactation performance of Holstein and Normande dairy cows. Animal 3, 891905.
Delaby, L, Horan, B, O’Donovan, M, Gallard, Y and Peyraud, JL 2010. Are high genetic merit dairy cows compatible with low input grazing systems? In: Grassland in a changing world (p. 928–930). Grassland Science in Europe, 15. In Paper Presented at the 23rd General Meeting of the European Grassland Federation, 29 August to 2 September 2010, Zürich, pp. 928930.
Dillon, P, Roche, JR, Shalloo, L and Horan, B 2005. Optimising financial return from grazing in temperate pastures. In Utilisation of grazed grass in temperate animal systems. Proceedings of a satellite workshop of the XXth International Grassland Congress, July 2005, Cork, Ireland, pp. 131–147.
Enriquez-Hidalgo, D, Gilliland, T, Deighton, MH, O’Donovan, M and Hennessy, D 2014. Milk production and enteric methane emissions by dairy cows grazing fertilized perennial ryegrass pasture with or without inclusion of white clover. Journal of Dairy Science 97, 14001412.
Falconer, DS 1952. The problem of environment and selection. The American Naturalist 86, 293298.
Falconer, DS 1989. Introduction to quantitative genetics. John Wileys and Sons, Essex, UK.
Friggens, NC, Blanc, F, Berry, DP and Puillet, L 2017. Review: deciphering animal robustness. A synthesis to facilitate its use in livestock breeding and management. Animal 11, 22372251.
Fulkerson, WJ, Davison, TM, Garcia, SC, Hough, G, Goddard, ME, Dobos, R and Blockey, M 2008. Holstein-Friesian dairy cows under a predominantly grazing system: interaction between genotype and environment. Journal of Dairy Science 91, 826839.
Fulkerson, W, Wilkins, J, Dobos, RC, Hough, GM, Goddard, ME and Davison, T 2001. Reproductive performance in Holstein-Friesian cows in relation to genetic merit and level of feeding when grazing pasture. Animal Science 73, 397406.
Gay, KD, Widmar, NJO, Nennich, TD, Schinckel, AP, Cole, JB and Schutz, MM 2014. Development of a lifetime merit-based selection index for US dairy grazing systems. Journal of Dairy Science 97, 45684578.
Gregorini, P, Waghorn, GC, Kuhn-Sherlock, B, Romera, AJ and Macdonald, KA 2015. Short communication: grazing pattern of dairy cows that were selected for divergent residual feed intake as calves. Journal of Dairy Science 98, 64866491.
Hack-ten Broeke, MJD, De Groot, WJM and Dijkstra, JP 1996. Impact of excreted nitrogen by grazing cattle on nitrate leaching. Soil Use and Management 12, 190198.
Hammond, KJ 2011. Methane emissions from ruminants fed white clover and perennial ryegrass forages. Doctorat science animale, Massey University, Nouvelle Zélande. p. 257.
Harris, BL and Kolver, ES 2001. Review of holsteinization on intensive pastoral dairy farming in New Zealand. Journal of Dairy Science 84, E56E61.
Hochman, Z, Carberry, PS, Robertson, MJ, Gaydon, DS, Bell, LW and McIntosh, PC 2013. Prospects for ecological intensification of Australian agriculture. European Journal of Agronomy 44, 109123.
Holmes, CW 1995. Genotype X environment interactions in dairy cattle: a New Zealand perspective. In BSAS Occasional Publication Breeding and Feeding the High Genetic Merit Dairy Cow (ed. by TLJ Lawrence, FJ Gordon and A Carson), pp. 5166. British Society of Animal Science, Midlothian, UK.
Horan, B, Dillon, P, Berry, DP, O’Connor, P and Rath, M 2005a. The effect of strain of Holstein-Friesian, feeding system and parity on lactation curves characteristics of spring-calving dairy cows. Livestock Production Science 95, 231241.
Horan, B, Dillon, P, Faverdin, P, Delaby, L, Buckley, F and Rath, M 2005b. The interaction of strain of Holstein-Friesian cows and pasture-based feed systems on milk yield, body weight, and body condition score. Journal of Dairy Science 88, 12311243.
Horan, B, Mee, JF, O’Connor, P, Rath, M and Dillon, P 2005c. The effect of strain of Holstein-Friesian cow and feeding system on postpartum ovarian function, animal production and conception rate to first service. Theriogenology 63, 950971.
Huebsch, M, Horan, B, Blum, P, Richards, KG, Grant, J and Fenton, O 2013. Impact of agronomic practices of an intensive dairy farm on nitrogen concentrations in a karst aquifer in Ireland. Agriculture, Ecosystems and Environment 179, 187199.
Jonker, JS, Kohn, RA and Erdman, RA 1998. Using milk urea nitrogen to predict nitrogen excretion and utilization efficiency in lactating dairy cows. Journal of Dairy Science 81, 26812692.
Kauffman, AJ and St-Pierre, NR 2001. The relationship of milk urea nitrogen to urine nitrogen excretion in Holstein and Jersey cows. Journal of Dairy Science 84, 22842294.
Kebreab, E, France, J, Beever, DE and Castillo, AR 2001. Nitrogen pollution by dairy cows and its mitigation by dietary manipulation. Nutrient Cycling in Agroecosystems 60, 275285.
Kennedy, J, Dillon, P, Faverdin, P, Delaby, L, Buckley, F and Rath, M 2002. The influence of cow genetic merit for milk production on response to level of concentrate supplementation in a grass-based system. Animal Science 75, 433445.
Kolver, ES, Roche, JR, de Veth, MJ, Thorne, PL and Napper, AR 2002. Total mixed ratios versus pasture diets. Evidence for a genotype x diet interaction in dairy cow performance. Proceedings of the New Zealand Society of Animal Production 62, 246251.
L’Huillier, PJ, Parr, CR and Bryant, AM 1988. Comparative performance and energy metabolism of Jerseys and Friesians in early-mid lactation. Proceedings of the New Zealand Society of Animal Production 48, 231235.
Lassen, J and Løvendahl, P 2016. Heritability estimates for enteric methane emissions from Holstein cattle measured using noninvasive methods. Journal of Dairy Science 99, 19591967.
Linnane, M, Horan, B, Connolly, J, O’Connor, P, Buckley, F and Dillon, P 2004. The effect of strain of Holstein-Friesian and feeding system on grazing behaviour, herbage intake and productivity in the first lactation. Animal Science 78, 169178.
Macdonald, KA, Beca, D, Penno, JW, Lancaster, JAS and Roche, JR 2011. Short communication: effect of stocking rate on the economics of pasture-based dairy farms. Journal of Dairy Science 94, 25812586.
Macdonald, KA, Penno, JW, Lancaster, JAS, Bryant, AM, Kidd, JM and Roche, JR 2017. Production and economic responses to intensification of pasture-based dairy production systems. Journal of Dairy Science 100, 66026619.
Macdonald, KA, Penno, JW, Lancaster, JAS and Roche, JR 2008a. Effect of stocking rate on pasture production, milk production, and reproduction of dairy cows in pasture-based systems. Journal of Dairy Science 91, 21512163.
Macdonald, KA, Verkerk, GA, Thorrold, BS, Pryce, JE, Penno, JW, McNaughton, LR, Burton, LJ, Lancaster, JAS, Williamson, JH and Holmes, CW 2008b. A comparison of three strains of Holstein-Friesian grazed on pasture and managed under different feed allowances. Journal of Dairy Science 91, 16931707.
McCarthy, S, Berry, DP, Dillon, P, Rath, M and Horan, B 2007. Influence of Holstein-Friesian strain and feed system on body weight and body condition score lactation profiles. Journal of Dairy Science 90, 18591869.
McCarthy, B, Delaby, L, Pierce, KM, Journot, F and Horan, B 2010. A meta-analysis of the impact of stocking rate on the productivity of pasture-based milk production systems. Advances in Animal Biosciences 1, 148.
McCarthy, B, Delaby, L, Pierce, KM, McCarthy, J, Fleming, C, Brennan, A and Horan, B 2016. The multi-year cumulative effects of alternative stocking rate and grazing management practices on pasture productivity and utilization efficiency. Journal of Dairy Science 99, 37843797.
McMeekan, C 1960. Grass to milk – a New Zealand philosophy. New Zealand Dairy Exporter, Wellington, New Zealand.
Miglior, F, Sewalem, A, Jamrozik, J, Bohmanova, J, Lefebvre, DM and Moore, RK 2007. Genetic analysis of milk urea nitrogen and lactose and their relationships with other production traits in Canadian Holstein cattle. Journal of Dairy Science 90, 24682479.
Namkoong, G 1985. The influence of composite traits on genotype by environment relations. Theoretical and Applied Genetics 70, 315317.
Nousiainen, J, Shingfield, KJ and Huhtanen, P 2004. Evaluation of milk urea nitrogen as a diagnostic of protein feeding. Journal of Dairy Science 87, 386398.
Peterson, R 1988. Comparison of Canadian and New Zealand sires in New Zealand for production, weight and conformation traits (Research Bulletin No. 5. Livestock Improvement Corporation Ltd, New Zealand Dairy Board, Newstead, New Zealand.
Piccand, V, Cutullic, E, Schori, F, Weilenmann, S and Thomet, P 2011. Which cow for pasture-based production systems? Production, reproduction and health. Recherche Agronomique Suisse 2, 252257.
Pinares-Patiño, CS, Hickey, SM, Young, E A, Dodds, KG, MacLean, S, Molano, G, Sandoval, E, Kjestrup, H, Harland, R, Hunt, C, Pickering, NK and McEwan, JC 2013. Heritability estimates of methane emissions from sheep. Animal 7 (suppl. 2), 316321.
Pretty, JN 1997. The sustainable intensification of agriculture. Natural Resources Forum 21, 247256.
Pretty, J and Bharucha, ZP 2014. Sustainable intensification in agricultural systems. Annals of Botany 114, 15711596.
Ramsbottom, G, Horan, B, Berry, DP and Roche, JR 2015. Factors associated with the financial performance of spring-calving, pasture-based dairy farms. Journal of Dairy Science 98, 35263540.
Robertson, LJ and Waghorn, GC 2002. Dairy industry perspectives on methane emissions and production from cattle fed pasture or total mixed rations in New Zealand. Proceedings of the New Zealand Society of Animal Production 62, 213218.
Roche, JR 2007. Milk production responses to pre- and postcalving dry matter intake in grazing dairy cows. Livestock Science 110, 1224.
Roche, JR 2017. Nutrition manage of grazing dairy cattle. In Achieving sustainable production of milk volume 3: dairy herd management (ed. Webster J), pp. 251–272. Burleigh-Dodds Science Publishing, Cambridge, UK.
Roche, JR, Berry, DP, Bryant, AM, Burke, CR, Butler, ST, Dillon, PG, Donaghy, DJ, Horan, B, Macdonald, KA and Macmillan, KL 2017a. A 100-year review: a century of change in temperate grazing dairy systems. Journal of Dairy Science 100, 1018910233.
Roche, JR, Berry, DP and Kolver, ES 2006a. Holstein-Friesian strain and feed effects on milk production, body weight, and body condition score profiles in grazing dairy cows. Journal of Dairy Science 89, 35323543.
Roche, JR, Friggens, NC, Kay, JK, Fisher, MW, Stafford, KJ and Berry, DP 2009a. Invited review: body condition score and its association with dairy cow productivity, health, and welfare. Journal of Dairy Science 92, 57695801.
Roche, JR and Horan, B 2013. Resilient farming systems for an expanding Irish dairy industry. In Irish dairying – harvesting the potential (ed. D. Berry, S. Butler and P. Dillon), pp. 1524. Teagasc, Animal & Grassland Research and Innovation Centre, Moorepark, Co. Cork, Ireland; Fermoy, Co. Cork, Ireland.
Roche, JR, Ledgard, SF, Sprosen, MS, Lindsey, SB, Penno, JW, Horan, B and Macdonald, KA 2016a. Increased stocking rate and associated strategic dry-off decision rules reduced the amount of nitrate-N leached under grazing. Journal of Dairy Science 99, 59165925.
Roche, JR, Ledgard, SF, Sprosen, MS, Lindsey, SB, Penno, JW, Horan, B and Macdonald, KA 2016b. Increased stocking rate and associated strategic dry-off decision rules reduced the amount of nitrate-N leached under grazing. Journal of Dairy Science 99, 59165925.
Roche, JR, Sheahan, AJ, Chagas, LM and Berry, DP 2006b. Short communication: genetic selection for milk production increases plasma ghrelin in dairy cows. Journal of Dairy Science 89, 34713475.
Roche, JR, Sheahan, AJ, Chagas, LM and Berry, DP 2007. Concentrate supplementation reduces postprandial plasma ghrelin in grazing dairy cows: a possible neuroendocrine basis for reduced pasture intake in supplemented cows. Journal of Dairy Science 90, 13541363.
Roche, JR, Turner, LR, Lee, JM, Edmeades, DC, Donaghy, DJ, Macdonald, KA, Penno, JW and Berry, DP 2009b. Weather, herbage quality and milk production in pastoral systems. 1. Temporal patterns and intra-relationships in weather variables. Animal Production Science 49, 192199.
Roche, JR, Turner, LR, Lee, JM, Edmeades, DC, Donaghy, DJ, Macdonald, KA, Penno, JW and Berry, DP 2009c. Weather, herbage quality and milk production in pastoral systems. 2. Temporal patterns and intra-relationships in herbage quality and mineral concentration parameters. Animal Production Science 49, 200210.
Roche, JR, Washburn, SP, Berry, DP, Donaghy, DJ and Horan, B 2017b. Seasonal pasture-based dairy production systems. In Large dairy herd management (ed. D. Beede), pp. 99114. American Dairy Science Association, , Champaign, IL, USA.
Ruelle, E, Delaby, L, Wallace, M and Shalloo, L 2018. Using models to establish the financially optimum strategy for Irish dairy farms. Journal of Dairy Science 101, 614623.
Selbie, DR, Buckthought, LE and Shepherd, MA 2015. The challenge of the urine patch for managing nitrogen in grazed pasture systems. Advances in Agronomy 129, 229292.
Sheahan, AJ, Kolver, ES and Roche, JR 2011. Genetic strain and diet effects on grazing behavior, pasture intake, and milk production. Journal of Dairy Science 94, 35833591.
Spaans, O, Macdonald, KA, Lancaster, JAS, Bryant, AM and Roche, JR 2018. Dairy cow breed interacts with stocking rate in temperate pasture-based dairy production systems. Journal of Dairy Science 101, 46904702.
Stakelum, G and Dillon, P 1991. Influence of sward structure and digestibility on the intake and performance of lactating and growing cattle. In Management issues for the grassland farmer in the 1990s. Occasional Symposium of the British Grassland Society No. 25 (ed. C.S. Mayne), pp. 30–42. British Grassland Society, Hurley, UK.
Stockdale, CR 2000. Levels of pasture substitution when concentrates are fed to grazing dairy cows in Northern Victoria. Australian Journal Experimental Agriculture 40, 913921.
Thorne, PL, Jago, JG, Kolver, ES and Roche, JR 2003. Diet and genotype affect feeding behaviour of Holstein-Friesian dairy cows during late. Proceedings of the New Zealand Society of Animal Production, 124–127.
Tittonell, P 2014. Ecological intensification of agriculture-sustainable by nature. Current Opinion in Environmental Sustainability 8, 5361.
Van Der Nagel, LS, Waghorn, GC and Forgie, VE 2003. Methane and carbon emissions from conventional pasture and grain-based total mixed rations for dairying. Proceedings of the New Zealand Society of Animal Production 63, 128132.
Van Soest, PJ 1982. Nutritional ecology of the ruminants, 2nd edition. Cornell University Press, Ithaca, NY, USA.
Williams, SRO, Moate, PJ, Deighton, MH, Hannah, MC, Wales, WJ and Jacobs, JL 2016. Milk production and composition, and methane emissions from dairy cows fed lucerne hay with forage brassica or chicory. Animal Production Science 56, 304311.
Wims, CM, Deighton, MH, Lewis, E, O’Loughlin, B, Delaby, L, Boland, TM and O’Donovan, M 2010. Effect of pregrazing herbage mass on methane production, dry matter intake, and milk production of grazing dairy cows during the mid-season period. Journal of Dairy Science 93, 49764985.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

animal
  • ISSN: 1751-7311
  • EISSN: 1751-732X
  • URL: /core/journals/animal
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed