Skip to main content Accessibility help
×
Home

Sire and liveweight affect feed intake and methane emissions of sheep confined in respiration chambers

  • D. L. Robinson (a1) (a2), J. P. Goopy (a1) (a2), A. J. Donaldson (a1) (a2), R. T. Woodgate (a1) (a2), V. H. Oddy (a1) (a2) and R. S. Hegarty (a1) (a3)...

Abstract

Daily methane production and feed intake were measured on 160 adult ewes, which were the progeny of 20 sires and 3 sire types (Merino, dual-purpose and terminal) from a genetically diverse flock. All animals were housed in individual pens and fed a 50/50 mix of chaffed lucerne and oaten hays at 20 g/kg liveweight (LW), with feed refusals measured for at least 10 days before the first of three 22-h measurements in respiration chambers (RC). Feed was withdrawn at 1600 h on the day before each RC test to encourage the ewes to eat the entire ration provided for them in the RC. After the first 1-day RC test, the sheep were returned to their pens for a day, then given a second 1-day RC test, followed by another day in their pens, then a third RC test. After all animals had been tested, they were ranked according to methane emissions adjusted for feed intake in the RC and on the previous day, enabling 10 low and 10 high methane animals to be chosen for repeat measurement. No variation between sires nor consistent effects of LW on feed eaten (%FE, expressed as per cent of feed offered) was evident in the 10 days before the first RC measurement. However, significant differences between sires (equivalent to an estimated heritability of 41%) were identified for %FE during the 2nd and 3rd days of RC testing (2 and 4 days after the initial RC test). The analysis of all data showed that methane emissions in the RC were related to feed intake on the day of testing and the two previous days (all P<0.0005). Before correcting for feed intake on previous days, there was some variation between sires in methane yield, equivalent to an estimated heritability of 9%. Correction for feed intake on the 2 previous days halved the residual variation, allowing other effects to be detected, including effects of LW, twins reared as singles, test batch, RC and test-day effects, but estimated sire variation fell to zero. In order to avoid potential biases, statistical models of methane emissions in the RC need to consider potential confounding factors, such as those identified as significant in this study.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Sire and liveweight affect feed intake and methane emissions of sheep confined in respiration chambers
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Sire and liveweight affect feed intake and methane emissions of sheep confined in respiration chambers
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Sire and liveweight affect feed intake and methane emissions of sheep confined in respiration chambers
      Available formats
      ×

Copyright

The online version of this article is published within an Open Access environment subject to the conditions of the Creative Commons Attribution licence http://creativecommons.org/licenses/by/3.0/

Corresponding author

References

Hide All
Arthur, PF, Herd, RM, Donoghue, KA, Bird, SH and Hegarty, RF 2012. Natural Variation in Methane Emissions among Progeny of Angus Bulls. Proceedings of the 15th AAAP Animal Science Congress, 26–30 November 2012,Thammasat University, Rangsit Campus, Thailand, pp. 256–260.
Barnett, MC, Goopy, JP, McFarlane, JR, Godwin, IR, Nolan, JV and Hegarty, RS 2012. Triiodothyronine influences digesta kinetics and methane yield in sheep. Animal Production Science 52, 572577.
Bickell, SL, Robinson, DL, Toovey, AF, Goopy, JP, Hegarty, RS, Revell, DK and Vercoe, PE 2011. Four week repeatability of daily and one hour methane production of mature merino wethers fed ad libitum. In Proceedings of the 19 AAABG Conference, 19–21 July, Perth, pp. 415–418.
Bird, SH, Hegarty, RS and Woodgate, R 2008. Persistence of defaunation effects on digestion and methane production in ewes. Australian Journal of Experimental Agriculture 48, 152155.
Butler, D, Cullis, B, Gilmour, A and Gogel, B 2009. ASReml-R Reference Manual, release 3, Queensland Department of Primary Industries and Fisheries, Brisbane.
Department of Climate Change and Energy Efficiency (DCCEE) 2012. Australian National Greenhouse Accounts. National Inventory Report 2010, vol. 1. Retrieved July 15, 2014, from http://www.climatechange.gov.au/publications/greenhouse-acctg/national-inventory-report-2010.aspx
Falconer, DS, Mackay, TFC and Frankham, R 1996. Introduction to quantitative genetics, 4th edition. Longmans Green, Harlow, Essex, UK.
Freetly, HC and Brown-Brandl, TM 2013. Enteric methane production from beef cattle that vary in feed efficiency. Journal of Animal Science 91, 48264831.
Gerber, P, Key, N, Portet, F and Steinfeld, H 2010. Policy options in addressing livestock's contribution to climate change. Animal 4, 393406.
Goopy, J, Robinson, DL and Hegarty, R 2009. Accuracy of measuring methane production in sheep. In Reducing emissions from livestock. Wellington, NZ. Retrieved July 15, 2014, from http://www.livestockemissions.net/user/file/33
Goopy, JP, Woodgate, R, Donaldson, A, Robinson, DL and Hegarty, RS 2011. Validation of a short-term methane measurement using portable static chambers to estimate daily methane production in sheep. Animal Feed Science and Technology 166–167, 219226.
Goopy, JP, Donaldson, A, Hegarty, R, Vercoe, PE, Haynes, F, Barnett, M and Oddy, VH 2014a. Low methane producing sheep exhibit different gut kinetics. British Journal of Nutrition 111, 578585.
Goopy, JP, Robinson, DL, Woodgate, RW, Donaldson, A, Oddy, VH, Vercoe, PE and Hegarty, RS 2014b. Estimates of repeatability and heritability of daily methane production in sheep using portable accumulation chambers. Animal Production Science (in press).
Hegarty, RS and McEwan, JC 2010. Genetic opportunities to reduce enteric methane emissions from ruminant livestock. In Proceedings of the 9th World Congress on Genetics Applied to Livestock Production, Leipzig, Germany, 1–6 August.
Kennedy, PM, Christopherson, RJ and Milligan, LP 1982. Effects of cold exposure on feed protein degradation, microbial protein synthesis and transfer of plasma urea to the rumen of sheep. British Journal of Nutrition 47, 521535.
O'Kelly, J and Spiers, W 1992. Effect of monensin on methane and heat productions of steers fed lucerne hay either ad libitum or at the rate of 250 g/hour. Australian Journal of Agricultural Research 43, 17891793.
Pinares-Patiño, CS, Ebrahimi, SH, McEwan, J, Dodds, KG, Dodds, K, Clark, H and Luo, D 2011a. Is rumen retention time implicated in sheep differences in methane emission? In Proceedings of the New Zealand Society of Animal Production. pp. 219222.
Pinares-Patiño, CS, McEwan, JC, Dodds, KG, Cárdenas, EA, Hegarty, RS, Koolaard, JP and Clark, H 2011b. Repeatability of methane emissions from sheep. Animal Feed Science and Technology 166–167, 210218.
Pinares-Patiño, CS, Hickey, SM, Young, EA, Dodds, KG, MacLean, S, Molano, G, Sandoval, E, Kjestrup, H, Harland, R, Hunt, C, Pickering, NK and McEwan, JC 2013. Heritability estimates of methane emissions from sheep. Animal 7, 316321.
Purser, DB and Moir, RJ 1966. Rumen volume as a factor involved in individual sheep differences. Journal of Animal Science 25, 509515.
Purvis, IW, Valencia, P, Overs, L and Greenwood, PL 2013. Novel phenotyping techniques for enhancing genetic and genomic predictions of traits that are difficult to measure in grazing livestock. In Proceedings of the 20th AAABG (Association for the Advacement of Animal Breeding and Genetics), 20–23 October, Napier, New Zealand, pp. 282–285.
R Development Core Team 2005. R: A language and environment for statistical computing, version 2.14. R Foundation for Statistical Computing, Vienna, Austria. ISBN: 3-900051-07-0. Retrieved from http://www.R-project.org
Robinson, DL 1987. Estimation and use of variance components. Journal of the Royal Statistical Society Series D (The Statistician) 36, 314.
Robinson, DL and Oddy, VH 2001. Improving estimates of weight gain and residual feed intake by adjusting for the amount of feed eaten before weighing. Australian Journal of Experimental Agriculture 41, 10571063.
Robinson, DL, Goopy, JP, Hegarty, RS and Vercoe, PE 2010. Repeatability, animal and sire variation in 1-hr methane emissions & relationships with rumen volatile fatty acid concentrations. Proceedings of the 9th Word Congress on Genetics Applied to Livestock Production, Leipzig, Germany, 1–6 August.
Robinson, DL, Bickell, S, Toovey, AF, Revell, DK and Vercoe, PE 2011. Factors affecting variability of feed intake of sheep with ad libitum access to feed and the relationship with daily methane production. In Proceedings of the 19 AAABG Conference, 19–21 July, Perth, pp. 159–162.
Robinson, DL, Goopy, JP, Hegarty, RS, Oddy, VH, Thompson, AN, Toovey, A, Macleay, CA, Briegal, JR, Woodgate, RT, Donaldson, A and Vercoe, PE 2014. Genetic and environmental variation in methane emissions of sheep at pasture. Journal of Animal Science (in press).
Stewart, WE, Stewart, DG and Schultz, LH 1958. Rates of volatile fatty acid production in the bovine rumen. Journal of Animal Science 17, 723736.
Torok, VA, Jones, FM, Percy, NJ, Durmic, Z, Phillips, FA, Naylor, T, Vercoe, P and Ophel-Keller, K 2011. Changes in rumen microbial ecology are linked with feed efficiency, diet and methane production in beef cattle. Recent Advances in Animal Nutrition - Australia 18, 135136.
Turner, HG and Thornton, RF 1966. A respiration chamber for cattle. In Proceedings of the Australian Society of Animal Production 6, pp. 413419.
Wall, E, Simm, G and Moran, D 2010. Developing breeding schemes to assist mitigation of greenhouse gas emissions. Animal 4, 366376.
White, JD, Allingham, PG, Gorman, CM, Emery, DL, Hynd, P, Owens, J, Bell, A, Siddell, J, Harper, G, Hayes, BJ, Daetwyler, HD, Usmar, J, Goddard, ME, Henshall, JM, Dominik, S, Brewer, H, van der Werf, JHJ, Nicholas, FW, Warner, R, Hofmyer, C, Longhurst, T, Fisher, T, Swan, P, Forage, R and Oddy, VH 2012. Design and phenotyping procedures for recording wool, skin, parasite resistance, growth, carcass yield and quality traits of the SheepGENOMICS mapping flock. Animal Production Science 52, 157171.

Keywords

Sire and liveweight affect feed intake and methane emissions of sheep confined in respiration chambers

  • D. L. Robinson (a1) (a2), J. P. Goopy (a1) (a2), A. J. Donaldson (a1) (a2), R. T. Woodgate (a1) (a2), V. H. Oddy (a1) (a2) and R. S. Hegarty (a1) (a3)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed