Skip to main content Accessibility help

Spatial distribution patterns of sheep following manipulation of feeding motivation and food availability

  • R. Freire (a1), D. L. Swain (a2) and M. A. Friend (a1)

We hypothesised that (i) increased feeding motivation will cause sheep to move further apart as a result of individuals trying to find food and (ii) in conditions of high food availability, sheep will move less and show greater social attraction. The effects of both feeding motivation and food availability on spatial distribution was examined in eight groups of food-deprived (high feeding motivation) and satiated (low feeding motivation) sheep in good or poor food resource plots in a 2 × 2 design. Distance travelled was assessed using Global Positioning System collars, grazing time using scan sampling and social cohesion using proximity collars that record the number and duration of encounters within 4 m. Food-deprived sheep in the good-resource plots grazed the most, whereas satiated sheep in the poor-resource plots grazed the least (P = 0.004). Food deprivation had no significant effect on the number or duration of encounters and feeding motivation appeared to have little effect on spatial distribution. Contrary to expectation, sheep had more encounters (P = 0.04) of a longer total duration (P = 0.02) in poor-resource plots than in good-resource plots, indicating that sheep were showing more social cohesion if food was scarce. Our findings suggest that when food is scarce, animals may come together in an attempt to share information on food availability. However, when a highly preferred food is abundant and well dispersed, they may move apart in order to maximise the intake. It is concluded that the particular details of our experiment, namely the even distribution or absence of a highly preferred food, affected spatial distribution patterns as sheep tried to find this food and maximise the intake.

Corresponding author
Hide All
Arnold, GW, Maller, RA 1985. An analysis of factors influencing spatial distribution in flocks of grazing sheep. Applied Animal Behaviour Science 14, 173189.
Clark, CW, Mangel, M 1984. Foraging and flocking strategies: information in an uncertain environment. American Naturalist 123, 626641.
Dumont, B, Boissy, A 2000. Grazing behaviour in sheep in a situation of conflict between feeding and social motivations. Behavioural Processes 49, 131138.
Dall, SRX, Giraldeau, L-A, Olsson, O, McNamara, JM, Stephens, DW 2005. Information and its use by animals in evolutionary ecology. Trends in Ecology and Evolution 20, 187193.
Fryxell, JM 1991. Forage quality and aggregation by large herbivores. American Naturalist 138, 478498.
Giraldeau, LA, Caraco, T 2000. Social foraging theory. Princeton University Press, Princeton, New Jersey.
Grand, TC, Dill, LM 1999. The effect of group size on the foraging behaviour of juvenile coho salmon: reduction of predation risk or increased competition. Animal Behaviour 58, 443451.
Hakoyama, H, Iguchi, K 1997. The information of food distribution realizes an ideal free distribution: support and perceptual limitations. Journal of Ethology 15, 6978.
Hewitson, L, Gordon, IJ, Dumont, B 2007. Social context affects patch-leaving decisions of sheep in a variable environment. Animal Behaviour 74, 239246.
Ji, WH, White, PCL, Clout, MN 2005. Contact rates between possums revealed by proximity loggers. Journal of Applied Ecology 42, 595604.
Michelena, P, Gautrais, J, Gérard, J-F, Bon, R, Deneubourg, J-L 2008. Social cohesion in groups of sheep: effect of activity level, sex composition and group size. Applied Animal Behaviour Science 12, 8193.
Mullen, JP, Matis, T, Adams, K, Ranganet, S 2004. Achieving robust protocols for mobile ad-hoc networks. Proceedings of the IERC (Industrial Engineering Research Conference), Houston, Texas.
Nocera, JJ, Forbes, GJ, Giraldeau, L-A 2008. Aggregations from using inadvertent social information: a form of ideal habitat selection. Ecography 32, 143152.
Oom, SP, Sibbald, AM, Hester, AJ, Miller, DR, Legg, CJ 2008. Impacts of sheep grazing a complex vegetation mosaic: relating behaviour to vegetation change. Agriculture Ecosystems and Environment 124, 219228.
Penning, PD, Parsons, AJ, Orr, RJ, Treacher, TT 1991. Intake and behavior responses by sheep to changes in sward characteristics under continuous stocking. Grass Forage Science 46, 1528.
Sibbald, AM, Hooper, RJ 2004. Sociability and the willingness of individual sheep to move away from their companions in order to graze. Applied Animal Behaviour Science 86, 5162.
Sibbald, AM, Shellard, LJF, Smart, TS 2000. Effects of space allowance on the grazing behaviour and spacing of sheep. Applied Animal Behaviour Science 70, 4962.
Sibbald, AM, Oom, SP, Hooper, RJ, Anderson, RM 2008. Effects of social behaviour on the spatial distribution of sheep grazing a complex vegetation mosaic. Applied Animal Behaviour Science 115, 149159.
Sibbald, AM, Erhard, HW, Hooper, RJ, Dumont, B, Boissy, A 2006. A test for measuring individual variation in how far grazing animals will move away from a social group to feed. Applied Animal Behaviour Science 98, 8999.
Swain, DL, Bishop-Hurley, GJ 2007. Using contact logging devices to explore animal affiliations: quantifying cow–calf interactions. Applied Animal Behaviour Science 102, 111.
Verbeek, E, Waas, J, McLeay, L, Matthews, LR 2009. Measurement of feeding motivation in sheep: effect of food restriction. International Society for Applied Ethology, Cairns, Australia.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

  • ISSN: 1751-7311
  • EISSN: 1751-732X
  • URL: /core/journals/animal
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed