Skip to main content
×
Home

The 1500 m South Pole ice core: recovering a 40 ka environmental record

  • K.A. Casey (a1) (a2), T.J. Fudge (a3), T.A. Neumann (a2), E.J. Steig (a3) (a4), M.G.P. Cavitte (a5) and D.D. Blankenship (a5)...
Abstract
Abstract

Supported by the US National Science Foundation, a new 1500 m, ∼40 ka old ice core will be recovered from South Pole during the 2014/15 and 2015/16 austral summer seasons using the new US intermediate-depth drill. The combination of low temperatures, relatively high accumulation rates and low impurity concentrations at South Pole will yield detailed records of ice chemistry and trace atmospheric gases. The South Pole ice core will provide a climate history record of a unique area of the East Antarctic plateau that is partly influenced by weather systems that cross the West Antarctic ice sheet. The ice at South Pole flows at ∼ 10ma−1 and the South Pole ice-core site is a significant distance from an ice divide. Therefore, ice recovered at depth originated progressively farther upstream of the coring site. New ground-penetrating radar collected over the drill site location shows no anthropogenic influence over the past ∼50 years or upper 15 m. Depth–age scale modeling results show consistent and plausible annual-layer thicknesses and accumulation rate histories, indicating that no significant stratigraphic disturbances exist in the upper 1500 m near the ice-core drill site.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      The 1500 m South Pole ice core: recovering a 40 ka environmental record
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about sending content to Dropbox.

      The 1500 m South Pole ice core: recovering a 40 ka environmental record
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about sending content to Google Drive.

      The 1500 m South Pole ice core: recovering a 40 ka environmental record
      Available formats
      ×
Copyright
References
Hide All
Allison P and 48 others (2012) Design and initial performance of the Askaryan Radio Array prototype EeV neutrino detector at the South Pole. Astropart. Phys., 35(7), 457477 (doi: 10.1016/j.astropartphys.2011.11.010)
Antarctic Treaty (2007) Management Plan for Antarctic Specially Managed Area No. 5, Measure 2, Annex A http://www.ats.aq/documents/recatt/Att357_e.pdf
Aydin M, Williams MB, Tatum C and Saltzman ES (2008) Carbonyl sulfide in air extracted from a South Pole ice core: a 2000 year record. Atmos. Chem. Phys., 8(24), 75337542 (doi: 10.5194/acp-8-7533-2008)
Aydin M and 7 others (2011) Recent decreases in fossil-fuel emissions of ethane and methane derived from firn air. Nature, 476(7359), 198201 (doi: 10.1038/nature10352)
Bamber JL, Vaughan DG and Joughin I (2000) Widespread complex flow in the interior of the Antarctic ice sheet. Science, 287(5456), 12481250 (doi: 10.1126/science.287.5456.1248)
Bamber JL, Gomez-Dans JL and Griggs JA (2009) A new 1 km digital elevation model of the Antarctic derived from combined satellite radar and laser data – Part 1: data and methods. Cryosphere, 3(1), 101111 (doi: 10.5194/tc-3-101-2009)
Bay RC, Rohde RA, Price PB and Bramall NE (2010) South Pole paleowind from automated synthesis of ice core records. J. Geophys. Res., 115(D14), D14126 (doi: 10.1029/2009JD013741)
Bingham RG, Siegert MJ, Young DA and Blankenship DD (2007) Organized flow from the South Pole to the Filchner–Ronne ice shelf: an assessment of balance velocities in interior East Antarctica using radio echo sounding data. J. Geophys. Res., 112(F3), F03S26 (doi: 10.1029/2006JF000556)
Bromwich DH and 6 others (2013) Central West Antarctica among the most rapidly warming regions on Earth. Nature Geosci., 6(2), 139145 (doi: 10.1038/ngeo1671)
Brook E and Wolff E (2006) The future of ice core science. Eos, 87(4), 39 (doi: 10.1029/2006EO040004)
Conference on Antarctica (1959) The Antarctic Treaty: 15 October 1959. United Nations Office for Disarmament Affairs, Washington, DC http://www.ats.aq/documents/ats/treaty_original.pdf
Dahl-Jensen D, Thorsteinsson T, Alley R and Shoji H (1997) Flow properties of the ice from the Greenland Ice Core Project ice core: the reason for folds? J. Geophys. Res., 102(C12), 2683126840 (doi: 10.1029/97JC01266)
Dahl-Jensen D, Gundestrup N, Gogineni SP and Miller H (2003) Basal melt at NorthGRIP modeled from borehole, ice-core and radio-echo sounder observations. Ann. Glaciol., 37, 207212 (doi: 10.3189/172756403781815492)
Dansgaard W and Johnsen SJ (1969) A flow model and a time scale for the ice core from Camp Century, Greenland. J. Glaciol., 8(53), 215223
Davis D and 11 others (2001) Unexpected high levels of NO observed at South Pole. Geophys. Res. Lett., 28(19), 36253628 (doi: 10.1029/2000GL012584)
Dixon D, Mayewski PA, Kaspari S, Sneed S and Handley M (2004) A 200 year sub-annual record of sulfate in West Antarctica, from 16 ice cores. Ann. Glaciol., 39, 545556 (doi: 10.3189/172756404781814113)
Dixon DA and 6 others (2013) Variations in snow and firn chemistry along US ITASE traverses and the effect of surface glazing. Cryosphere, 7(2), 515535 (doi: 10.5194/tc-7-515-2013)
Doran PT and 12 others (2002) Antarctic climate cooling and terrestrial ecosystem response. Nature, 415(6871), 517520
Dunbar NW, Zielinski GA and Voisin DT (2003) Tephra layers in the Siple and Taylor Dome ice cores, Antarctic: sources and correlations. J. Geophys. Res., 108(B8), 2374 (doi: 10.1029/2002JB002056)
EPICA Community Members (2006) One-to-one coupling of glacial climate variability in Greenland and Antarctica. Nature, 444(7116), 195198 (doi: 10.1038/nature05301)
Fretwell P and 59 others (2013) Bedmap2: improved ice bed, surface and thickness datasets for Antarctica. Cryosphere, 7(1), 375393 (doi: 10.5194/tc-7-375-2013)
Frey MM, Bales RC and McConnell JR (2006) Climate sensitivity of the century-scale hydrogen peroxide (H2O2) record preserved in 23 ice cores from West Antarctica. J. Geophys. Res., 111(D21), D21301 (doi: 10.1029/2005JD006816)
Fudge TJ, Waddington ED, Conway H, Lundin JMD and Taylor K (2014) Interpolation methods for Antarctic ice-core timescales: application to Byrd, Siple Dome and Law Dome ice cores. Climate Past, 10(3), 11951209 (doi: 10.5194/cp-10-1195-2014)
Giovinetto MB and Schwerdtfeger W (1965) Analysis of a 200 year snow accumulation series from the South Pole. Arch. Meteorol. Geophys. Bioklimatol. Ser. A., 15(2), 227250 (doi: 10.1007/BF02246754)
Gow AJ (1965) On the accumulation and seasonal stratification of snow at the South Pole. J. Glaciol., 5(40), 467477
Griggs JA and Bamber JL (2009) A new 1 km digital elevation model of Antarctica derived from combined radar and laser data – Part 2: validation and error estimates. Cryosphere, 3(1), 113123 (doi: 10.5194/tc-3-113-2009)
Hamilton GS (2004) Topographic control of regional accumulation rate variability at South Pole and implications for ice-core interpretation. Ann. Glaciol., 39, 214218 (doi: 10.3189/172756404781814050)
Harris JM (1992) An analysis of 5-day midtropospheric flow patterns for the South Pole: 1985–1989. Tellus B, 44(4), 409421 (doi: 10.1034/j.1600-0889.1992.00016.x)
Hirasawa N, Nakamura H and Yamanouchi T (2000) Abrupt changes in meteorological conditions observed at an inland Antarctic station in association with wintertime blocking. Geophys. Res. Lett., 27(13), 19111914 (doi: 10.1029/1999GL011039)
Huybrechts P, Rybak O, Pattyn F, Ruth U and Steinhage D (2007) Ice thinning, upstream advection, and non-climatic biases for the upper 89% of the EDML ice core from a nested model of the Antarctic ice sheet. Climate Past, 3(4), 577589 (doi: 10.5194/cp-3-577-2007)
IceCube Collaboration (2013) South Pole glacial climate reconstruction from multi-borehole laser particulate stratigraphy. J. Glaciol., 59(218), 11171128 (doi: 10.3189/2013JoG13J068)
Ice Drilling Design and Operations (IDDO) (2013) IDD System Engineering Design Review. http://icedrill.org/Documents/Download.pm?DOCUMENT_ID=1035
Jacobel R, Welch BC, Steig E and Schneider D (2005) Glaciological and climatic significance of Hercules Dome, Antarctica – an optimal site for deep ice core drilling. J. Geophys. Res., 110(F1), F01015 (doi: 10.1029/2004JF000188)
Johnsen SJ and 16 others (2007) The Hans Tausen drill: design, performance, further developments and some lessons learned. Ann. Glaciol., 47, 8998 (doi: 10.3189/172756407786857686)
Johnson JA, Shturmakov AJ, Kuhl TW, Mortensen N and Gibson CJ (2014) Next generation of an intermediate-depth drill. Ann. Glaciol., 55(68) (doi: 10.3189/2014AoG68A011) (see paper in this issue)
Karle A and IceCube Collaboration (2003) IceCube – the next generation neutrino telescope at the South Pole. Nucl. Phys. B., 118, 388395 (doi: 10.1016/S0920-5632(03)01337-9)
Kirchner S and Delmas RJ (1988) A 1000 year glaciochemical study at the South Pole. Ann. Glaciol., 10, 8084
Kuivinen K (1983) A 237-meter ice core from South Pole Station. Antarct. J. US, 18(5), 113114
Lazzara MA, Keller LM, Markle T and Gallagher J (2012) Fifty-year Amundsen–Scott South Pole station surface climatology. Atmos. Res., 118, 240259 (doi: 10.1016/j.atmosres.2012.06.027)
Le Brocq AM, Payne AJ and Siegert MJ (2006) West Antarctic balance calculations: impact of flux-routing algorithm, smoothing algorithm and topography. Comput. Geosci., 32(10), 17801795 (doi: 10.1016/j.cageo.2006.05.003)
Legrand M and Feniet-Saigne C (1991) Methanesulfonic acid in south polar snow layers: a record of strong El Niño? Geophys. Res. Lett., 18(2), 187190 (doi: 10.1029/90GL02784)
Legrand MR, Lorius C, Barkov NI and Petrov VN (1988) Vostok (Antarctica) ice core: atmospheric chemistry changes over the last climatic cycle (160 ka). Atmos. Environ., 22(2), 317331 (doi: 10.1016/0004-6981(88)90037-6)
Mahesh A, Eager R, Campbell JR and Spinhirne JD (2003) Observations of blowing snow at the South Pole. J. Geophys. Res., 108(D22), 4707 (doi: 10.1029/2002JD003327)
McConnell JR, Bales RC and Davis DR (1997) Recent intra-annual snow accumulation at South Pole: implications for ice core interpretations. J. Geophys. Res., 102(D18), 21 94721 954 (doi: 10.1029/97JD00848)
Meyerson EA, Mayewski PA, Kreutz KJ, Meeker LD, Whitlow SI and Twickler MS (2002) The polar expression of ENSO and sea-ice variability as recorded in a South Pole ice core. Ann. Glaciol., 35, 430436 (doi: 10.3189/172756402781817149)
Mosley-Thompson E (1980) 911 years of microparticle deposition at the South Pole: a climatic interpretation. Inst. Polar Stud. Rep. 73
Mosley-Thompson E and Thompson LG (1982) Nine centuries of microparticle deposition at the South Pole. Quat. Res., 17(1), 113 (doi: 10.1016/0033-5894(82)90041-2)
Mosley-Thompson E, Paskievitch JF, Gow AJ and Thompson LG (1999) Late 20th century increase in South Pole snow accumulation. J. Geophys. Res., 104(D4), 38773886 (doi: 10.1029/1998JD200092)
Neff W, Helmig D, Grachev A and Davis D (2008) A study of boundary layer behavior associated with high NO concentrations at the South Pole using a minisodar, tethered balloon, and sonic anemometer. Atmos. Environ., 42(12), 27622779 (doi: 10.1016/j.atmosenv.2007.01.033)
Neumann TA, Conway H, Waddington E, Catania GA and Morse DL (2008) Holocene accumulation and ice sheet dynamics in central West Antarctica. J. Geophys. Res., 113(F2), F02018 (doi: 10.1029/2007JF000764)
Nicolas JP and Bromwich DH (2011) Climate of West Antarctica and influence of marine air intrusions. J. Climate, 2(1), 4967 (doi: 10.1175/2010JCLI3522.1)
Oerter H and 6 others (2000) Accumulation rates in Dronning Maud Land, Antarctica, as revealed by dielectric-profiling measurements of shallow firn cores. Ann. Glaciol., 30, 2734 (doi: 10.3189/172756400781820705)
Petit JR and 18 others (1999) Climate and atmospheric history of the past 420 ka from the Vostok ice core, Antarctica. Nature, 399(6735), 429436 (doi: 10.1038/20859)
Price PB, Woschnagg K and Chirkin D (2000) Age vs depth of glacial ice at South Pole. Geophys. Res. Lett., 27(14), 21292132 (doi: 10.1029/2000GL011351)
Radok U and Lile RC (1977) A year of snow accumulation at Plateau Station. In Meteorological studies at Plateau Station, Antarctica. (Antarctic Research Series 25) American Geophysical Union, Washington, DC, 1726
Rand J (1980) The Danish Deep Drill. Progress report: February–March 1979. CRREL Spec. Rep. 80-3
Rignot E, Mouginot J and Scheuchl B (2011) Ice flow of the Antarctic Ice Sheet. Science, 333(6048), 14271430 (doi: 10.1126/science.1208336)
Saltzman ES, Aydin M, Tatum C and Williams MB (2008) 2,000-year record of atmospheric methyl bromide from a South Pole ice core. J. Geophys. Res., 113(D5), D05304 (doi: 10.1029/2007JD008919)
Schenewerk MS, Mackay JR, Hothem LD and Shupe G (1994) Determination of ice flow velocities at the South Pole using measurements from the Global Positioning System (GPS). National Geodetic Survey (GDS)–National Oceanic and Atmospheric Administration (NOAA), Washington, DC http://www.ngs.noaa.gov/GRD/GPS/Projects/SOUTH_POLE/south_pole.html
Schneider DP and Steig EJ (2008) Ice cores record significant 1940s Antarctic warmth related to tropical climate variability. Proc. Natl Acad. Sci. USA (PNAS), 105(34), 1215412158 (doi: 10.1073/pnas.0803627105)
Schneider DP, Steig EJ and Comiso JC (2004) Recent climate variability in Antarctica from satellite-derived temperature data. J. Climate, 17(7), 15691583
Severinghaus JP, Grachev A and Battle M (2001) Firn air isotope and temperature measurements from Siple Dome and South Pole. National Snow and Ice Data Center, Boulder, CO http://nsidc.org/data/nsidc-0098
Steig EJ and Orsi AJ (2013) The heat is on in Antarctica. Nature Geosci., 6(2), 8788 (doi: 10.1038/ngeo1717)
Steig EJ and 16 others (2005) High-resolution ice cores from US ITASE (West Antarctica): development and validation of chronologies and determination of precision and accuracy. Ann. Glaciol., 41, 7784 (doi: 10.3189/172756405781813311)
Steig EJ, Schneider DP, Rutherford SD, Mann ME, Comiso JC and Shindell DT (2009) Warming of the Antarctic ice-sheet surface since the 1957 International Geophysical Year. Nature, 457(7228), 459462 (doi: 10.1038/nature07669)
Steig EJ and 21 others (2013) Recent climate and ice-sheet changes in West Antarctica compared with the past 2 ka. Nature Geosci., 6(5), 372375 (doi: 10.1038/ngeo1778)
Stenni B and 6 others (2002) Eight centuries of volcanic signal and climate change at Talos Dome (East Antarctica). J. Geophys. Res., 107(D9), 4076 (doi: 10.1029/2000JD000317)
Thompson DWJ and Solomon S (2002) Interpretation of recent Southern Hemisphere climate change. Science, 296(5569), 895899 (doi: 10.1126/science.1069270)
Turner J and 8 others (2005) Antarctic climate change during the last 50 years. Int. J. Climatol., 25(3), 279294 (doi: 10.1002/joc.1130)
Van der Veen CJ, Mosley-Thompson E, Gow AJ and Mark BG (1999) Accumulation at South Pole: comparison of two 900-year records. J. Geophys. Res., 104(D24), 31 06731 076 (doi: 10.1029/1999JD900501)
Veres D and 15 others (2013) The Antarctic ice core chronology (AICC2012): an optimized multi-parameter and multi-site dating approach for the last 120 thousand years. Climate Past, 9(4), 17331748 (doi: 10.5194/cp-9-1733-2013)
WAIS Divide Project Members (2013) Onset of deglacial warming in West Antarctica driven by local orbital forcing. Nature, 500(7463), 440444 (doi: 10.1038/nature12376)
Wu X and Jezek KC (2004) Antarctic ice-sheet balance velocities from merged point and vector data. J. Glaciol., 50(169), 219230 (doi: 10.3189/172756504781830042)
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Annals of Glaciology
  • ISSN: 0260-3055
  • EISSN: 1727-5644
  • URL: /core/journals/annals-of-glaciology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Full text views

Total number of HTML views: 1
Total number of PDF views: 15 *
Loading metrics...

Abstract views

Total abstract views: 19 *
Loading metrics...

* Views captured on Cambridge Core between 26th July 2017 - 13th December 2017. This data will be updated every 24 hours.