Skip to main content
×
×
Home

An integrated modelling approach to understanding subglacial hydraulic release events

  • Gwenn E. Flowers (a1) and Garry K. C. Clarke
Abstract

Outbursts of subglacial water from numerous alpine glaciers have been observed and documented. Such events tend to occur in spring and are thus attributed to an inability of the winter subglacial drainage system (characterized by high water pressure and low capacity) to accommodate a sudden and profuse influx of surface meltwater. Prior to a release event, bursts of glacier motion are common, and the release then precipitates the restoration of summer plumbing that damps or terminates surface acceleration. The events bear witness to the importance of interactions between surface melt, runoff, en-glacial water storage and internal routing, in addition to subglacial drainage morphology. Using a distributed numerical model to simultaneously solve surficial, englacial and subglacial water-transport equations, we investigate the role of these components in a hydro-mechanical event observed at Trapridge Glacier, YukonTerritory, Canada, in July 1990.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      An integrated modelling approach to understanding subglacial hydraulic release events
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      An integrated modelling approach to understanding subglacial hydraulic release events
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      An integrated modelling approach to understanding subglacial hydraulic release events
      Available formats
      ×
Copyright
References
Hide All
Anderson, S. P., Fernald, K. M. H., Anderson, R. S. and Humphrey, N. F.. 1999. Physical and chemical characterization of a spring flood event, Bench Glacier, Alaska, U.S.A.: evidence for water storage. J. Glaciol., 45(150), 177–189.
Björnsson, H. 1992. Jökulhlaups in Iceland: prediction, characteristics and simulation. Ann. Glaciol, 16, 95–106.
Chorley, D.W. and Frind, E. O.. 1978. An iterative quasi-three-dimensional finite element model for heterogeneous multiaquifer systems. Water Resour. Res., 14(5), 943–951.
Clarke, G. K. C. 1986. Professor Mathews, outburst floods, and other glaciological disasters. Can. J. Earth Set., 23(6), 859–868.
Clarke, G. K. C. 1996. Lumped-element analysis of subglacial hydraulic circuits. J. Geophys. Res., 101(B8), 17,547–17,560.
Fischer, U. H. and Clarke, G. K. C.. 1994. Ploughing of subglacial sediment. J. Glaciol., 40(134), 97–106.
Flowers, G. E. and Clarke, G. K. C.. 1999. Surface and bed topography of Trapridge Glacier, Yukon Territory, Canada: digital elevation models and derived hydraulic geometry. J. Glaciol., 45(149), 165–174.
Fountain, A. G. and Walder, J. S.. 1998. Water flow through temperate glaciers. Rev. Geophys, 36(3), 299–328.
Freeze, R. A. and Cherry, J. A.. 1979. Groundwater. Englewood Cliffs, NJ, Prentice-Hall.
Hock, R. 1999. A distributed temperature-index ice- and snowmelt model including potential direct solar radiation. J. Glaciol., 45(149), 101–111.
Humphrey, N. F. and Raymond, C. F.. 1994. Hydrology, erosion and sediment production in a surging glacier: Variegated Glacier, Alaska, 1982–83. J. Glaciol., 40(136), 539–552.
Iken, A., Rothlisberger, H., Flotron, A. and Haeberli, W.. 1983. The uplift of Unteraargletscher at the beginning of the melt season ― a consequence of water storage at the bed? J. Glaciol., 29(101), 28–47
Kamb, B. and Engelhardt, H.. 1987. Waves of accelerated motion in a glacier approaching surge: the mini-surges of Variegated Glacier, Alaska, U.S.A. J. Glaciol., 33(113), 27–46.
Kelley, C.T 1995 Iterative methods for linear and nonlinear systems. Philadelphia, PA, Society for Industrial and Applied Mathematics.
Marshall, S.J. and Clarke, G. K. C.. 1999. Modeling North American freshwater runoff and proglacial lake history through the last glacial cycle. Quat. Res., 52, 300–315.
Murray, T. and Clarke, G. K. C.. 1995. Black-box modeling of the subglacial water system. J. Geophys. Res., 100(B7), 10,231–10,245.
Nye, J. F. 1976. Water flow in glaciers: jökulhlaups, tunnels and veins. J. Glaciol., 17(76), 181–207.
Raymond, C. F., Benedict, R.J., Harrison, W. D., Echelmeyer, K. A. and Sturm, M.. 1995. Hydrological discharges and motion of Fels and Black Rapids Glaciers, Alaska, U.S.A.: implications for the structure of their drainage systems. J. Glaciol., 41(138), 290–304.
Skidmore, M. and Sharp, M.. 1999. Drainage system behaviour of a High-Arctic polythermal glacier. Ann. Glaciol., 28, 209–215.
Spring, U. and Hutter, K.. 1981. Numerical studies of jökulhlaups. Cold Reg. Sci.Technol.,4(3), 227–244.
Stone, D. B. 1993. Characterization of the basal hydraulic system of a surge-type glacier: Trapridge Glacier, 1989–92. (Ph.D. thesis, University of British Columbia.)
Stone, D. B. and Clarke, G. K. C.. 1996. In situ measurements of basal water quality and pressure as an indicator of the character of subglacial drainage systems. Hydrol. Processes, 10(4), 615–628.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Annals of Glaciology
  • ISSN: 0260-3055
  • EISSN: 1727-5644
  • URL: /core/journals/annals-of-glaciology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed