Skip to main content Accessibility help
×
Home

Basal crevasses and associated surface crevassing on the Larsen C ice shelf, Antarctica, and their role in ice-shelf instability

  • Daniel McGrath (a1), Konrad Steffen (a1), Ted Scambos (a2), Harihar Rajaram (a3), Gino Casassa (a4) and Jose Luis Rodriguez Lagos (a4)...

Abstract

We identify a series of basal crevasses along a 31 km transect across the northern sector of the Larsen C ice shelf, Antarctica, using in situ ground-penetrating radar. The basal crevasses propagate from a region of multiple, shallow basal fractures to form widely spaced (0.5–2.0 km) but deeply incised (70–134 m) features. Surface troughs, observed in visible imagery, exist above the basal crevasses as the ice vertically shears to reach hydrostatic equilibrium, while widespread surface crevassing occurs along the crests and on the flanks of the undulations, primarily aligned with the topography. We suggest, based on the location of the surface crevasses and the along-flow evolution of the basal crevasses, that the former are induced by a bending stress created by gradients in hydrostatic forces. Using a linear elastic fracture mechanics model, we investigate the sensitivity of basal crevasse propagation to observed trends of ice-shelf thinning and acceleration. Basal crevasses are large-scale structural weaknesses that can both control meltwater ponding and induce surface crevassing. Together, these features may represent an important mechanism in both past and future ice-shelf disintegration events on the Antarctic Peninsula.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Basal crevasses and associated surface crevassing on the Larsen C ice shelf, Antarctica, and their role in ice-shelf instability
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Basal crevasses and associated surface crevassing on the Larsen C ice shelf, Antarctica, and their role in ice-shelf instability
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Basal crevasses and associated surface crevassing on the Larsen C ice shelf, Antarctica, and their role in ice-shelf instability
      Available formats
      ×

Copyright

References

Hide All
Braun, M, Humbert, A and Moll, A (2009) Changes of Wilkins Ice Shelf over the past 15 years and inferences on its stability. Cryosphere, 3(1), 41–56
Casassa, G and Whillans, IM (1994) Decay of surface topography on the Ross Ice Shelf, Antarctica. Ann. Glaciol., 20, 249–253
Cook, AJ and Vaughan, DG (2010) Overview of areal changes of the ice shelves on the Antarctic Peninsula over the past 50 years. Cryosphere, 4(1), 77–98
Das, SB and 6 others (2008) Fracture propagation to the base of the Greenland Ice Sheet during supraglacial lake drainage. Science, 320(5877), 778–781
Fahnestock, MA, Abdalati, W and Shuman, CA (2002) Long melt seasons on ice shelves of the Antarctic Peninsula: an analysis using satellite-based microwave emission measurements. Ann. Glaciol., 34, 127–133
Fahrbach, E, Hoppema, M, Rohardt, G, Schröder, M and Wisotzki, A (2004) Decadal-scale variations of water mass properties in the deep Weddell Sea. Ocean Dyn., 54(1), 77–91
Förste, C and 12 others (2008) The GeoForschungsZentrum Potsdam/Groupe de Recherche de Géodésie Spatiale satellite-only and combined gravity field models: EIGEN-GL04S1 and EIGEN-GL04C. J. Geod., 82(6), 331–346
Glasser, NF and Scambos, TA (2008) A structural glaciological analysis of the 2002 Larsen B ice-shelf collapse. J. Glaciol., 54(184), 3–16
Glasser, N and 7 others (2009) Surface structure and stability of the Larsen C ice shelf, Antarctic Peninsula. J. Glaciol., 55(191), 400–410
Griggs, JA and Bamber, JL (2009) Ice shelf thickness over Larsen C, Antarctica, derived from satellite altimetry. Geophys. Res. Lett., 36(19), L19501 (doi: 10.1029/2009GL039527)
Haran, T, Bohlander, J, Scambos, T, Painter, T and Fahnestock, M (2006) MODIS mosaic of Antarctica (MOA) image map. National Snow and Ice Data Center, Boulder, CO. Digital media
Holland, PR, Corr, HFJ, Vaughan, DG, Jenkins, A and Skvarca, P (2009) Marine ice in Larsen Ice Shelf. Geophys. Res. Lett., 36(11), L11604 (doi: 10.1029/2009GL038162)
Holland, PR and 6 others (2011) The air content of Larsen Ice Shelf. Geophys. Res. Lett., 38(10), L10503 (doi: 10.1029/2011GL047245)
Jacobs, SS, Jenkins, A, Giulivi, CF and Dutrieux, P (2011) Stronger ocean circulation and increased melting under Pine Island Glacier ice shelf. Nature Geosci., 4(8), 519–523
Jansen, D, Kulessa, B, Sammonds, PR, Luckman, A, King, EC and Glasser, NF (2010) Present stability of the Larsen C ice shelf, Antarctic Peninsula. J. Glaciol., 56(198), 593–600
Jenkins, A, Corr, HFJ, Nicholls, KW, Stewart, CL and Doake, CSM (2006) Interactions between ice and ocean observed with phase-sensitive radar near an Antarctic ice-shelf grounding line. J. Glaciol., 52(178), 325–346
Jezek, KC (1984) A modified theory of bottom crevasses used as a means for measuring the buttressing effect of ice shelves on inland ice sheets. J. Geophys. Res., 89(B3), 1925–1931
Jezek, KC, Bentley, CR and Clough, JW (1979) Electromagnetic sounding of bottom crevasses on the Ross Ice Shelf, Antarctica. J. Glaciol., 24(90), 321–330
Johnston, TL and Parker, ER (1957) Preliminary investigation of surface effects in flow and fracture. Minerals Research Laboratory, Institute of Engineering Research, University of California, Berkeley, CA (Tech. Rep. 27(16))
Khazendar, A and Jenkins, A (2003) A model of marine ice formation within Antarctic ice shelf rifts. J. Geophys. Res., 108(C7), 3235 (doi: 10.1029/2002JC001673)
Khazendar, A, Rignot, E and Larour, E (2011) Acceleration and spatial rheology of Larsen C Ice Shelf, Antarctic Peninsula. Geophys. Res. Lett., 38(9), L09502 (doi: 10.1029/2011GL046775)
Lambrecht, A, Sandhager, H, Vaughan, DG and Mayer, C (2007) New ice thickness maps of Filchner–Ronne Ice Shelf, Antarctica, with specific focus on grounding lines and marine ice. Antarct. Sci., 19(4), 521–532
MacAyeal, DR, Scambos, TA, Hulbe, CL and Fahnestock, MA (2003) Catastrophic ice-shelf break-up by an ice-shelf-fragment-capsize mechanism. J. Glaciol., 49(164), 22–36
Nicholls, KW, Pudsey, CJ and Morris, P (2004) Summertime water masses off the northern Larsen C Ice Shelf. Geophys. Res. Lett., 31(9), L09309 (doi: 10.1029/2004GL019924)
Orheim, O (1982) Radio echo-sounding of Riiser-Larsenisen. Ann. Glaciol., 3, 355
Orr, A and 6 others (2004) A ‘low-level’ explanation for the recent large warming trend over the western Antarctic Peninsula involving blocked winds and changes in zonal circulation. Geophys. Res. Lett., 31(6), L06204 (doi: 10.1029/2003GL019160)
Orr, A and 7 others (2008) Characteristics of summer airflow over the Antarctic Peninsula in response to recent strengthening of westerly circumpolar winds. J. Atmos. Sci., 65(4), 1396–1413
Padman, L, Fricker, HA, Coleman, R, Howard, S and Erofeeva, L (2002) A new tide model for the Antarctic ice shelves and seas. Ann. Glaciol., 34, 247–254
Rist, MA (1996) Fracture mechanics of ice shelves. FRISP Rep. 10, 102–105
Rist, MA, Sammonds, PR, Murrell, SAF, Meredith, PG, Oerter, H and Doake, CSM (1996) Experimental fracture and mechanical properties of Antarctic ice: preliminary results. Ann. Glaciol., 23, 284–292
Rist, MA, Sammonds, PR, Oerter, H and Doake, CSM (2002) Fracture of Antarctic shelf ice. J. Geophys. Res., 107(B1) (doi: 10.1029/2000JB000058)
Robertson, R, Visbeck, M, Gordon, AL and Fahrbach, E (2002) Longterm temperature trends in the deep waters of the Weddell Sea. Deep-Sea Res. II, 49(21), 4791–4806
Sandhäger, H, Rack, W and Jansen, D (2005) Model investigations of Larsen B Ice Shelf dynamics prior to the breakup. FRISP Rep. 16, 5–12
Scambos, TA, Hulbe, C, Fahnestock, M and Bohlander, J (2000) The link between climate warming and break-up of ice shelves in the Antarctic Peninsula. J. Glaciol., 46(154), 516–530
Scambos, T, Hulbe, C and Fahnestock, M (2003) Climate-induced ice shelf disintegration in the Antarctic Peninsula. In Domack, EW, Burnett, A, Leventer, A, Conley, P, Kirby, M and Bindschadler, R eds. Antarctic Peninsula climate variability: a historical and paleoenvironmental perspective. American Geophysical Union, Washington, DC, 79–92 (Antarctic Research Series 79)
Scambos, T and 7 others (2009) Ice shelf disintegration by plate bending and hydro-fracture: satellite observations and model results of the 2008 Wilkins ice shelf break-ups. Earth Planet. Sci. Lett., 280(1–4), 51–60
Shepherd, A, Wingham, D, Payne, T and Skvarca, P (2003) Larsen ice shelf has progressively thinned. Science, 302(5646), 856–859
Swithinbank, C (1977) Glaciological research in the Antarctic Peninsula. Philos. Trans. R. Soc. London, Ser. B, 279(963), 161–183
Van den Broeke, M (2005) Strong surface melting preceded collapse of Antarctic Peninsula ice shelf. Geophys. Res. Lett., 32(12), L12815 (doi: 10.1029/2005GL023247)
Van der Veen, CJ (1998a) Fracture mechanics approach to penetration of surface crevasses on glaciers. Cold Reg. Sci. Technol., 27(1), 31–47
Van der Veen, CJ (1998b) Fracture mechanics approach to penetration of bottom crevasses on glaciers. Cold Reg. Sci. Technol., 27(3), 213–223
Van der Veen, CJ and Whillans, IM (1989) Force budget: I. Theory and numerical methods. J. Glaciol., 35(119), 53–60
Vaughan, D (2006) Recent trends in melting conditions on the Antarctic Peninsula and their implications for ice-sheet mass balance and sea level. Arct. Antarct. Alp. Res., 38(1), 147–152
Vaughan, DG and 8 others (2003) Recent rapid regional climate warming on the Antarctic Peninsula. Climatic Change, 60(3), 243–274
Weertman, J (1973) Can a water-filled crevasse reach the bottom surface of a glacier? IASH Publ. 95 (Symposium at Cambridge 1969 – Hydrology of Glaciers), 139–145.
Weertman, J (1980) Bottom crevasses. J. Glaciol., 25(91), 185–188
Zwally, HJ, Abdalati, W, Herring, T, Larson, K, Saba, J and Steffen, K (2002) Surface melt-induced acceleration of Greenland ice-sheet flow. Science, 297(5579), 218–222

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed