Skip to main content
×
×
Home

Contrasts in the response of adjacent fjords and glaciers to ice-sheet surface melt in West Greenland

  • Timothy C. Bartholomaus (a1), Leigh A. Stearns (a2), David A. Sutherland (a3), Emily L. Shroyer (a4), Jonathan D. Nash (a4), Ryan T. Walker (a5), Ginny Catania (a1), Denis Felikson (a1), Dustin Carroll (a3), Mason J. Fried (a1), Brice P. Y. Noël (a6) and Michiel R. Van Den Broeke (a6)...
Abstract

Neighboring tidewater glaciers often exhibit asynchronous dynamic behavior, despite relatively uniform regional atmospheric and oceanic forcings. This variability may be controlled by a combination of local factors, including glacier and fjord geometry, fjord heat content and circulation, and glacier surface melt. In order to characterize and understand contrasts in adjacent tidewater glacier and fjord dynamics, we made coincident ice-ocean-atmosphere observations at high temporal resolution (minutes to weeks) within a 10 000 km2 area near Uummannaq, Greenland. Water column velocity, temperature and salinity measurements reveal systematic differences in neighboring fjords that imply contrasting circulation patterns. The observed ocean velocity and hydrography, combined with numerical modeling, suggest that subglacial discharge plays a major role in setting fjord conditions. In addition, satellite remote sensing of seasonal ice flow speed and terminus position reveal both speedup and slow-down in response to melt, as well as differences in calving style among the neighboring glaciers. Glacier force budgets and modeling also point toward subglacial discharge as a key factor in glacier behavior. For the studied region, individual glacier and fjord geometry modulate subglacial discharge, which leads to contrasts in both fjord and glacier dynamics.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Contrasts in the response of adjacent fjords and glaciers to ice-sheet surface melt in West Greenland
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Contrasts in the response of adjacent fjords and glaciers to ice-sheet surface melt in West Greenland
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Contrasts in the response of adjacent fjords and glaciers to ice-sheet surface melt in West Greenland
      Available formats
      ×
Copyright
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
References
Hide All
Alley, RB and 5 others (1998) How glaciers entrain and transport basal sediment: physical constraints. Quat. Sci. Rev., 16(9), 10171038
Amundson, JM and 5 others (2008) Glacier, fjord, and seismic response to recent large calving events, Jakobshavn Isbræ, Greenland. Geophys. Res. Lett., 35(22), 15 (doi: 10.1029/2008GL035281)
Andrews, LC and 7 others (2014) Direct observations of evolving subglacial drainage beneath the Greenland Ice Sheet. Nature, 514(7520), 8083 (doi: 10.1038/nature13796)
Åström, JA and 10 others (2014) Termini of calving glaciers as self-organized critical systems. Nat. Geosci., 7(12), 874878 (doi: 10.1038/NGEO2290)
Bartholomaus, TC, Anderson, RS and Anderson, SP (2011) Growth and collapse of the distributed subglacial hydrologic system of Kennicott Glacier, Alaska, USA, and its effects on basal motion. J. Glaciol., 57(206), 9851002
Bartholomaus, TC, Larsen, CF, O'Neel, S and West, ME (2012) Calving seismicity from iceberg-sea surface interactions. J. Geophys. Res., 117(F4), 116 (doi: 10.1029/2012JF002513)
Bartholomaus, TC, Larsen, CF and O'Neel, S (2013) Does calving matter? Evidence for significant submarine melt. Earth Planet. Sci. Lett., 380, 2130
Bevan, SL, Luckman, AJ and Murray, T (2012) Glacier dynamics over the last quarter of a century at Helheim, Kangerdlugssuaq and 14 other major Greenland outlet glaciers. Cryosphere, 6(5), 923937 (doi: 10.5194/tc-6-923-2012)
Bindschadler, RA (1983) The importance of pressurized subglacial water in separation and sliding at the glacier bed. J. Glaciol., 29(101), 319
Bjørk, AA and 8 others (2012) An aerial view of 80 years of climate-related glacier fluctuations in southeast Greenland. Nat. Geosci., 5, 427432 (doi: 10.1038/NGEO1481)
Bjørk, AA, Kruse, LM and Michaelsen, PB (2015) Getting Greenland's glaciers right – a new dataset of all official Greenlandic glacier names. Cryopshere, 9, 22152218
Blatter, H (1995) Velocity and stress fiels in grounded glaciers: a simple algorithm for including deviatoric stress gradients. J. Glaciol., 41(138), 333344
Burgess, EW, Larsen, CF and Forster, RR (2013) Summer melt regulates winter glacier flow speeds throughout Alaska. Geophys. Res. Lett., 40(23), 61606164 (doi: 10.1002/2013GL058228)
Carr, JR and 9 others (2015) Basal topographic controls on rapid retreat of Humboldt Glacier, northern Greenland. J. Glaciol., 61(225), 137150 (doi: 10.3189/2015JoG14J128)
Carroll, D and 5 others (2015) Modeling turbulent subglacial meltwater plumes: implications for fjord-scale buoyancy-driven circulation. J. Phys. Ocean., 45(8), 21692185 (doi: 10.1175/JPO-D-15-0033.1)
Cassotto, R, Fahnestock, M, Amundson, JM, Truffer, M and Joughin, I (2015) Seasonal and interannual variations in ice melange and its impact on terminus stability, Jakobshavn Isbrae, Greenland. J. Glaciol., 61(225), 7688 (doi: 10.3189/2015JoG13J235)
Chauché, N and 8 others (2014) Ice–ocean interaction and calving front morphology at two west Greenland tidewater outlet glaciers. Cryosphere, 8(4), 14571468 (doi: 10.5194/tc-8-1457-2014)
Chu, VW, Smith, LC, Rennermalm, AK, Forster, RR and Box, JE (2012) Hydrologic controls on coastal suspended sediment plumes around the Greenland Ice Sheet. Cryosphere, 6, 119 (doi: 10.5194/tc-6-1-2012)
Csatho, BM and 9 others (2014) Laser altimetry reveals complex pattern of Greenland ice sheet dynamics. Proc. Natl. Acad. Sci. U.S.A., 111(52), 1847818483 (doi: 10.1073/pnas.1411680112)
Dowdeswell, JA and 5 others (2014) Late quaternary ice flow in a West Greenland fjord and cross-shelf trough system: submarine landforms from Rink Isbrae to Uummannaq shelf and slope. Quat. Sci. Rev., 92, 292309 (doi: 10.1016/j.quascirev.2013.09.007)
Enderlin, EM and 5 others (2014) An improved mass budget for the Greenland ice sheet. Geophys. Res. Lett., 41, 17 (doi: 10.1002/2013GL059010)
Fried, MJ and 8 others (2015) Distributed subglacial discharge drives significant submarine melt at a Greenland tidewater glacier. Geophys. Res. Lett., 42(21), 93289336 (doi: 10.1002/2015GL065806)
Gade, HG (1979) Melting of ice in sea water: a primitive model with application to the Antarctic ice shelf and icebergs. J. Phys. Ocean., 9(1), 189198
Gladish, CV, Holland, DM, Rosing-Asvid, A, Behrens, JW and Boje, J (2015) Oceanic boundary conditions for Jakobshavn glacier: part I. Variability and renewal of Ilulissat Icefjord waters, 2001–2014. J. Phys. Ocean., 45(1), 332 (doi: 10.1175/JPO-D-14-0044.1)
Harig, C and Simons, FJ (2012) Mapping Greenland's mass loss in space and time. Proc. Natl. Acad. Sci. U.S.A., 109(49), 1993419937 (doi: 10.1073/pnas.1206785109)
Hewitt, IJ (2013) Seasonal changes in ice sheet motion due to melt water lubrication. Earth Planet. Sci. Lett., 371–372, 1625 (doi: 10.1016/j.epsl.2013.04.022)
Holland, DM, Thomas, RH, de Young, B, Ribergaard, MH and Lyberth, B (2008) Acceleration of Jakobshavn Isbræ triggered by warm subsurface ocean waters. Nat. Geosci., 1(10), 659664 (doi: 10.1038/ngeo316)
Howat, IM, Joughin, I, Tulaczyk, S and Gogineni, S (2005) Rapid retreat and acceleration of Helheim Glacier, east Greenland. Geophys. Res. Lett., 32(22), L22502 (doi: 10.1029/2005GL024737)
Howat, IM, Box, JE, Ahn, Y, Herrington, A and McFadden, EM (2010) Seasonal variability in the dynamics of marine-terminating outlet glaciers in Greenland. J. Glaciol., 56(198), 601613 (doi: 10.3189/002214310793146232)
Howat, IM, Negrete, A and Smith, BE (2014) The Greenland Ice Mapping Project (GIMP) land classification and surface elevation data sets. Cryosphere, 8(4), 15091518 (doi: 10.5194/tc-8-1509-2014)
James, TD, Murray, T, Selmes, N, Scharrer, K and Leary, MO (2014) Buoyant flexure and basal crevassing in dynamic mass loss at Helheim Glacier. Nat. Geosci., 7, 593596 (doi: 10.1038/NGEO2204)
Jenkins, A (2011) Convection-driven melting near the grounding lines of ice shelves and tidewater glaciers. J. Phys. Ocean., 41(12), 22792294
Joughin, I, Smith, BE, Howat, IM, Scambos, T and Moon, T (2010) Greenland flow variability from ice-sheet-wide velocity mapping. J. Glaciol., 56(197), 415430 (doi: 10.3189/002214310792447734)
Joughin, I and 6 others (2012) Seasonal to decadal scale variations in the surface velocity of Jakobshavn Isbrae, Greenland: observation and model-based analysis. J. Geophys. Res., 117, 120 (doi: 10.1029/2011JF002110)
Kienholz, C, Hock, R and Arendt, AA (2013) A new semi-automatic approach for dividing glacier complexes into individual glaciers. J. Glaciol., 59(217), 925937 (doi: 10.3189/2013JoG12J138)
Kjaer, KH and 13 others (2012) Aerial photographs reveal late-20th-century dynamic ice loss in Northwestern Greenland. Science (80-.), 337, 569573
Larour, E, Seroussi, H, Morlighem, M and Rignot, E (2012) Continental scale, high order, high spatial resolution, ice sheet modeling using the Ice Sheet System Model (ISSM). J. Geophys. Res., 117(F01022), 120
Lea, JM and 8 others (2014) Terminus-driven retreat of a major southwest Greenland tidewater glacier during the early 19th century: insights from glacier reconstructions and numerical modelling. J. Glaciol., 60(220), 333344 (doi: 10.3189/2014JoG13J163)
Luthi, M, Funk, M, Iken, A, Gogineni, S and Truffer, M (2002) Mechanisms of fast flow in Jakobshavn Isbrae, West Greenland: part III. Measurements of ice deformation, temperature and cross-borehole conductivity in boreholes to the bedrock. J. Glaciol., 48(162), 369385 (doi: 10.3189/172756502781831322)
MacAyeal, DR (1993) A tutorial on the use of control methods in ice-sheet modeling. J. Glaciol., 39(131), 9198
MacGregor, JA, Catania, GA, Markowski, MS and Andrews, AG (2012) Widespread rifting and retreat of ice-shelf margins in the eastern Amundsen Sea Embayment between 1972 and 2011. J. Glaciol., 58(209), 458466 (doi: 10.3189/2012JoG11J262)
McFadden, EM, Howat, IM, Joughin, I, Smith, BE and Ahn, Y (2011) Changes in the dynamics of marine terminating outlet glaciers in west Greenland (2000–2009). J. Geophys. Res., 116(F02022), 116 (doi: 10.1029/2010JF001757)
McNabb, RW and Hock, R (2014) Alaska tidewater glacier terminus positions, 1948–2012. J. Geophys. Res. Earth Surf., 119, 115 (doi: 10.1002/2013JF002915)
Moon, T and Joughin, I (2008) Changes in ice front position on Greenland's outlet glaciers from 1992 to 2007. J. Geophys. Res., 113(F2), 110 (doi: 10.1029/2007JF000927)
Moon, T, Joughin, I, Smith, B and Howat, I (2012) 21st-Century evolution of Greenland outlet glacier velocities. Science (80), 336, 576578
Moon, T and 6 others (2014) Distinct patterns of seasonal Greenland glacier velocity. Geophys. Res. Lett., 41, 72097216 (doi: 10.1002/2014GL061836)
Moon, T, Joughin, I and Smith, B (2015) Seasonal to multiyear variability of glacier surface velocity, terminus position, and sea ice/ice mélange in northwest Greenland. J. Geophys. Res. Earth Surf., 120, 818833 (doi: 10.1002/2015JF003494)
Morlighem, M, Rignot, E, Mouginot, J, Seroussi, H and Larour, E (2014) Deeply incised submarine glacial valleys beneath the Greenland ice sheet. Nat. Geosci., 7, 418422 (doi: 10.1038/NGEO2167)
Motyka, RJ, Truffer, M, Kuriger, EM and Bucki, AK (2006) Rapid erosion of soft sediments by tidewater glacier advance: Taku Glacier, Alaska, USA. Geophys. Res. Lett., 33(24), L24504 (doi: 10.1029/2006GL028467)
Motyka, RJ, Dryer, WP, Amundson, J, Truffer, M and Fahnestock, M (2013) Rapid submarine melting driven by subglacial discharge, LeConte Glacier, Alaska. Geophys. Res. Lett., 40, 16 (doi: 10.1002/grl.51011)
Murray, T and 10 others (2010) Ocean regulation hypothesis for glacier dynamics in southeast Greenland and implications for ice sheet mass changes. J. Geophys. Res., 115(F3), 115 (doi: 10.1029/2009JF001522)
Murray, T and 9 others (2015) Dynamics of glacier calving at the ungrounded margin of Helheim Glacier, southeast Greenland. J. Geophys. Res. Earth Surf., 120(6), 964982 (doi: 10.1002/2015JF003531)
Nick, FM, Vieli, A, Howat, IM and Joughin, I (2009) Large-scale changes in Greenland outlet glacier dynamics triggered at the terminus. Nat. Geosci., 2(2), 110114 (doi: 10.1038/NGEO394)
Noël, B and 5 others (2015) Evaluation of the updated regional climate model RACMO2.3: summer snowfall impact on the Greenland ice sheet. Cryosphere, 9(5), 18311844 (doi: 10.5194/tc-9-1831-2015)
O'Neel, S, Pfeffer, WT, Krimmel, R and Meier, M (2005) Evolving force balance at Columbia Glacier, Alaska, during its rapid retreat. J. Geophys. Res., 110(F3), 118 (doi: 10.1029/2005JF000292)
Pattyn, F (2003) A new three-dimensional higher-order thermomechanical ice sheet model: basic sensitivity, ice stream development, and ice flow across subglacial lakes. J. Geophys. Res., 108(B8), 115 (doi: 10.1029/2002JB002329)
Rignot, E and Mouginot, J (2012) Ice flow in Greenland for the International Polar Year 2008–2009. Geophys. Res. Lett., 39(11) (doi: 10.1029/2012GL051634)
Rignot, E, Fenty, I, Menemenlis, D and Xu, Y (2012) Spreading of warm ocean waters around Greenland as a possible cause for glacier acceleration. Ann. Glaciol., 53(60), 257266 (doi: 10.3189/2012AoG60A136)
Sciascia, R, Straneo, F, Cenedese, C and Heimbach, P (2013) Seasonal variability of submarine melt rate and circulation in an East Greenland fjord. J. Geophys. Res., 118, 115 (doi: 10.1002/jgrc.20142)
Shepherd, A and 45 others (2012) A reconciled estimate of ice-sheet mass balance. Science (80-.), 338, 11831189 (doi: 10.1126/science.1228102)
Shreve, RL (1972) Movement of water in glaciers. J. Glaciol., 11(62), 205214
Slater, DA, Nienow, PW, Cowton, TR, Goldberg, DN and Sole, AJ (2015) Effect of near-terminus subglacial hydrology on tidewater glacier submarine melt rates. Geophys. Res. Lett., 42, 18 (doi: 10.1002/2014GL062494)
Stearns, LA and 6 others (2015) Glaciological and marine geological controls on terminus dynamics of Hubbard Glacier, southeast Alaska. J. Geophys. Res. Earth Surf., 120, 10651081 (doi: 10.1002/2014JF003341)
Straneo, F and 6 others (2011) Impact of fjord dynamics and glacial runoff on the circulation near Helheim Glacier. Nat. Geosci., 4(5), 322327 (doi: 10.1038/ngeo1109)
Straneo, F and 8 others (2012) Characteristics of ocean waters reaching Greenland's glaciers. Ann. Glaciol., 53(60), 202210 (doi: 10.3189/2012AoG60A059)
Straneo, F and 15 others (2013) Challenges to understanding the dynamic response of Greenland's marine terminating glaciers to oceanic and atmospheric forcing. Bull. Amer. Meteor. Soc., 94(8), 11311144 (doi: 10.1175/BAMS-D-12-00100.1)
Sutherland, DA, Straneo, F and Pickart, RS (2014) Characteristics and dynamics of two major Greenland glacial fjords. J. Geophys. Res. Ocean., 119, 37673791 (doi: 10.1002/2013JC009786)
Tedstone, AJ, Nienow, PW, Gourmelen, N and Sole, AJ (2014) Greenland ice sheet annual motion insensitive to spatial variations in subglacial hydraulic structure. Geophys. Res. Lett., 41, 89108917 (doi: 10.1002/2014GL062386)
Thomas, RH (2004) Force-perturbation analysis of recent thinning and acceleration of Jakobshavn Isbrae, Greenland. J. Glaciol., 50(168), 5766 (doi: 10.3189/172756504781830321)
van der Veen, CJ (1996) Tidewater calving. J. Glaciol., 42(141), 375385
van der Veen, CJ and Whillans, IM (1989) Force budget: I. Theory and numerical methods. J. Glaciol., 35(119), 5360
van der Veen, CJ, Plummer, JC and Stearns, LA (2011) Controls on the recent speed-up of Jakobshavn Isbræ, West Greenland. J. Glaciol., 57(204), 770782
van der Veen, CJ, Stearns, LA, Johnson, J and Csatho, B (2014) Flow dynamics of Byrd Glacier, East Antarctica. J. Glaciol., 60(224), 10531064 (doi: 10.3189/2014JoG14J052)
Veitch, SA and Nettles, M (2012) Spatial and temporal variations in Greenland glacial-earthquake activity, 1993–2010. J. Geophys. Res., 117, 120 (doi: 10.1029/2012JF002412)
Vernon, CL and 6 others (2013) Surface mass balance model intercomparison for the Greenland ice sheet. Cryosphere, 7, 599614 (doi: 10.5194/tcd-6-3999-2012)
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Annals of Glaciology
  • ISSN: 0260-3055
  • EISSN: 1727-5644
  • URL: /core/journals/annals-of-glaciology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Type Description Title
PDF
Supplementary materials

Bartholomaus supplementary material
Tables S1-S2

 PDF (41 KB)
41 KB

Metrics

Full text views

Total number of HTML views: 29
Total number of PDF views: 351 *
Loading metrics...

Abstract views

Total abstract views: 513 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 21st May 2018. This data will be updated every 24 hours.