Skip to main content
×
Home
    • Aa
    • Aa

Contrasts in the response of adjacent fjords and glaciers to ice-sheet surface melt in West Greenland

  • Timothy C. Bartholomaus (a1), Leigh A. Stearns (a2), David A. Sutherland (a3), Emily L. Shroyer (a4), Jonathan D. Nash (a4), Ryan T. Walker (a5), Ginny Catania (a1), Denis Felikson (a1), Dustin Carroll (a3), Mason J. Fried (a1), Brice P. Y. Noël (a6) and Michiel R. Van Den Broeke (a6)...
Abstract
ABSTRACT

Neighboring tidewater glaciers often exhibit asynchronous dynamic behavior, despite relatively uniform regional atmospheric and oceanic forcings. This variability may be controlled by a combination of local factors, including glacier and fjord geometry, fjord heat content and circulation, and glacier surface melt. In order to characterize and understand contrasts in adjacent tidewater glacier and fjord dynamics, we made coincident ice-ocean-atmosphere observations at high temporal resolution (minutes to weeks) within a 10 000 km2 area near Uummannaq, Greenland. Water column velocity, temperature and salinity measurements reveal systematic differences in neighboring fjords that imply contrasting circulation patterns. The observed ocean velocity and hydrography, combined with numerical modeling, suggest that subglacial discharge plays a major role in setting fjord conditions. In addition, satellite remote sensing of seasonal ice flow speed and terminus position reveal both speedup and slow-down in response to melt, as well as differences in calving style among the neighboring glaciers. Glacier force budgets and modeling also point toward subglacial discharge as a key factor in glacier behavior. For the studied region, individual glacier and fjord geometry modulate subglacial discharge, which leads to contrasts in both fjord and glacier dynamics.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Contrasts in the response of adjacent fjords and glaciers to ice-sheet surface melt in West Greenland
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about sending content to Dropbox.

      Contrasts in the response of adjacent fjords and glaciers to ice-sheet surface melt in West Greenland
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about sending content to Google Drive.

      Contrasts in the response of adjacent fjords and glaciers to ice-sheet surface melt in West Greenland
      Available formats
      ×
Copyright
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

RB Alley and 5 others (1998) How glaciers entrain and transport basal sediment: physical constraints. Quat. Sci. Rev., 16(9), 10171038

JM Amundson and 5 others (2008) Glacier, fjord, and seismic response to recent large calving events, Jakobshavn Isbræ, Greenland. Geophys. Res. Lett., 35(22), 15 (doi: 10.1029/2008GL035281)

LC Andrews and 7 others (2014) Direct observations of evolving subglacial drainage beneath the Greenland Ice Sheet. Nature, 514(7520), 8083 (doi: 10.1038/nature13796)

JA Åström and 10 others (2014) Termini of calving glaciers as self-organized critical systems. Nat. Geosci., 7(12), 874878 (doi: 10.1038/NGEO2290)

TC Bartholomaus , RS Anderson and SP Anderson (2011) Growth and collapse of the distributed subglacial hydrologic system of Kennicott Glacier, Alaska, USA, and its effects on basal motion. J. Glaciol., 57(206), 9851002

TC Bartholomaus , CF Larsen , S O'Neel and ME West (2012) Calving seismicity from iceberg-sea surface interactions. J. Geophys. Res., 117(F4), 116 (doi: 10.1029/2012JF002513)

TC Bartholomaus , CF Larsen and S O'Neel (2013) Does calving matter? Evidence for significant submarine melt. Earth Planet. Sci. Lett., 380, 2130

SL Bevan , AJ Luckman and T Murray (2012) Glacier dynamics over the last quarter of a century at Helheim, Kangerdlugssuaq and 14 other major Greenland outlet glaciers. Cryosphere, 6(5), 923937 (doi: 10.5194/tc-6-923-2012)

AA Bjørk and 8 others (2012) An aerial view of 80 years of climate-related glacier fluctuations in southeast Greenland. Nat. Geosci., 5, 427432 (doi: 10.1038/NGEO1481)

EW Burgess , CF Larsen and RR Forster (2013) Summer melt regulates winter glacier flow speeds throughout Alaska. Geophys. Res. Lett., 40(23), 61606164 (doi: 10.1002/2013GL058228)

JR Carr and 9 others (2015) Basal topographic controls on rapid retreat of Humboldt Glacier, northern Greenland. J. Glaciol., 61(225), 137150 (doi: 10.3189/2015JoG14J128)

D Carroll and 5 others (2015) Modeling turbulent subglacial meltwater plumes: implications for fjord-scale buoyancy-driven circulation. J. Phys. Ocean., 45(8), 21692185 (doi: 10.1175/JPO-D-15-0033.1)

R Cassotto , M Fahnestock , JM Amundson , M Truffer and I Joughin (2015) Seasonal and interannual variations in ice melange and its impact on terminus stability, Jakobshavn Isbrae, Greenland. J. Glaciol., 61(225), 7688 (doi: 10.3189/2015JoG13J235)

N Chauché and 8 others (2014) Ice–ocean interaction and calving front morphology at two west Greenland tidewater outlet glaciers. Cryosphere, 8(4), 14571468 (doi: 10.5194/tc-8-1457-2014)

VW Chu , LC Smith , AK Rennermalm , RR Forster and JE Box (2012) Hydrologic controls on coastal suspended sediment plumes around the Greenland Ice Sheet. Cryosphere, 6, 119 (doi: 10.5194/tc-6-1-2012)

BM Csatho and 9 others (2014) Laser altimetry reveals complex pattern of Greenland ice sheet dynamics. Proc. Natl. Acad. Sci. U.S.A., 111(52), 1847818483 (doi: 10.1073/pnas.1411680112)

JA Dowdeswell and 5 others (2014) Late quaternary ice flow in a West Greenland fjord and cross-shelf trough system: submarine landforms from Rink Isbrae to Uummannaq shelf and slope. Quat. Sci. Rev., 92, 292309 (doi: 10.1016/j.quascirev.2013.09.007)

EM Enderlin and 5 others (2014) An improved mass budget for the Greenland ice sheet. Geophys. Res. Lett., 41, 17 (doi: 10.1002/2013GL059010)

MJ Fried and 8 others (2015) Distributed subglacial discharge drives significant submarine melt at a Greenland tidewater glacier. Geophys. Res. Lett., 42(21), 93289336 (doi: 10.1002/2015GL065806)

HG Gade (1979) Melting of ice in sea water: a primitive model with application to the Antarctic ice shelf and icebergs. J. Phys. Ocean., 9(1), 189198

CV Gladish , DM Holland , A Rosing-Asvid , JW Behrens and J Boje (2015) Oceanic boundary conditions for Jakobshavn glacier: part I. Variability and renewal of Ilulissat Icefjord waters, 2001–2014. J. Phys. Ocean., 45(1), 332 (doi: 10.1175/JPO-D-14-0044.1)

C Harig and FJ Simons (2012) Mapping Greenland's mass loss in space and time. Proc. Natl. Acad. Sci. U.S.A., 109(49), 1993419937 (doi: 10.1073/pnas.1206785109)

DM Holland , RH Thomas , B de Young , MH Ribergaard and B Lyberth (2008) Acceleration of Jakobshavn Isbræ triggered by warm subsurface ocean waters. Nat. Geosci., 1(10), 659664 (doi: 10.1038/ngeo316)

IM Howat , I Joughin , S Tulaczyk and S Gogineni (2005) Rapid retreat and acceleration of Helheim Glacier, east Greenland. Geophys. Res. Lett., 32(22), L22502 (doi: 10.1029/2005GL024737)

IM Howat , JE Box , Y Ahn , A Herrington and EM McFadden (2010) Seasonal variability in the dynamics of marine-terminating outlet glaciers in Greenland. J. Glaciol., 56(198), 601613 (doi: 10.3189/002214310793146232)

IM Howat , A Negrete and BE Smith (2014) The Greenland Ice Mapping Project (GIMP) land classification and surface elevation data sets. Cryosphere, 8(4), 15091518 (doi: 10.5194/tc-8-1509-2014)

TD James , T Murray , N Selmes , K Scharrer and MO Leary (2014) Buoyant flexure and basal crevassing in dynamic mass loss at Helheim Glacier. Nat. Geosci., 7, 593596 (doi: 10.1038/NGEO2204)

A Jenkins (2011) Convection-driven melting near the grounding lines of ice shelves and tidewater glaciers. J. Phys. Ocean., 41(12), 22792294

I Joughin , BE Smith , IM Howat , T Scambos and T Moon (2010) Greenland flow variability from ice-sheet-wide velocity mapping. J. Glaciol., 56(197), 415430 (doi: 10.3189/002214310792447734)

I Joughin and 6 others (2012) Seasonal to decadal scale variations in the surface velocity of Jakobshavn Isbrae, Greenland: observation and model-based analysis. J. Geophys. Res., 117, 120 (doi: 10.1029/2011JF002110)

C Kienholz , R Hock and AA Arendt (2013) A new semi-automatic approach for dividing glacier complexes into individual glaciers. J. Glaciol., 59(217), 925937 (doi: 10.3189/2013JoG12J138)

KH Kjaer and 13 others (2012) Aerial photographs reveal late-20th-century dynamic ice loss in Northwestern Greenland. Science (80-.), 337, 569573

E Larour , H Seroussi , M Morlighem and E Rignot (2012) Continental scale, high order, high spatial resolution, ice sheet modeling using the Ice Sheet System Model (ISSM). J. Geophys. Res., 117(F01022), 120

JM Lea and 8 others (2014) Terminus-driven retreat of a major southwest Greenland tidewater glacier during the early 19th century: insights from glacier reconstructions and numerical modelling. J. Glaciol., 60(220), 333344 (doi: 10.3189/2014JoG13J163)

M Luthi , M Funk , A Iken , S Gogineni and M Truffer (2002) Mechanisms of fast flow in Jakobshavn Isbrae, West Greenland: part III. Measurements of ice deformation, temperature and cross-borehole conductivity in boreholes to the bedrock. J. Glaciol., 48(162), 369385 (doi: 10.3189/172756502781831322)

JA MacGregor , GA Catania , MS Markowski and AG Andrews (2012) Widespread rifting and retreat of ice-shelf margins in the eastern Amundsen Sea Embayment between 1972 and 2011. J. Glaciol., 58(209), 458466 (doi: 10.3189/2012JoG11J262)

EM McFadden , IM Howat , I Joughin , BE Smith and Y Ahn (2011) Changes in the dynamics of marine terminating outlet glaciers in west Greenland (2000–2009). J. Geophys. Res., 116(F02022), 116 (doi: 10.1029/2010JF001757)

RW McNabb and R Hock (2014) Alaska tidewater glacier terminus positions, 1948–2012. J. Geophys. Res. Earth Surf., 119, 115 (doi: 10.1002/2013JF002915)

T Moon and I Joughin (2008) Changes in ice front position on Greenland's outlet glaciers from 1992 to 2007. J. Geophys. Res., 113(F2), 110 (doi: 10.1029/2007JF000927)

T Moon , I Joughin , B Smith and I Howat (2012) 21st-Century evolution of Greenland outlet glacier velocities. Science (80), 336, 576578

T Moon and 6 others (2014) Distinct patterns of seasonal Greenland glacier velocity. Geophys. Res. Lett., 41, 72097216 (doi: 10.1002/2014GL061836)

T Moon , I Joughin and B Smith (2015) Seasonal to multiyear variability of glacier surface velocity, terminus position, and sea ice/ice mélange in northwest Greenland. J. Geophys. Res. Earth Surf., 120, 818833 (doi: 10.1002/2015JF003494)

M Morlighem , E Rignot , J Mouginot , H Seroussi and E Larour (2014) Deeply incised submarine glacial valleys beneath the Greenland ice sheet. Nat. Geosci., 7, 418422 (doi: 10.1038/NGEO2167)

RJ Motyka , M Truffer , EM Kuriger and AK Bucki (2006) Rapid erosion of soft sediments by tidewater glacier advance: Taku Glacier, Alaska, USA. Geophys. Res. Lett., 33(24), L24504 (doi: 10.1029/2006GL028467)

RJ Motyka , WP Dryer , J Amundson , M Truffer and M Fahnestock (2013) Rapid submarine melting driven by subglacial discharge, LeConte Glacier, Alaska. Geophys. Res. Lett., 40, 16 (doi: 10.1002/grl.51011)

T Murray and 10 others (2010) Ocean regulation hypothesis for glacier dynamics in southeast Greenland and implications for ice sheet mass changes. J. Geophys. Res., 115(F3), 115 (doi: 10.1029/2009JF001522)

T Murray and 9 others (2015) Dynamics of glacier calving at the ungrounded margin of Helheim Glacier, southeast Greenland. J. Geophys. Res. Earth Surf., 120(6), 964982 (doi: 10.1002/2015JF003531)

FM Nick , A Vieli , IM Howat and I Joughin (2009) Large-scale changes in Greenland outlet glacier dynamics triggered at the terminus. Nat. Geosci., 2(2), 110114 (doi: 10.1038/NGEO394)

B Noël and 5 others (2015) Evaluation of the updated regional climate model RACMO2.3: summer snowfall impact on the Greenland ice sheet. Cryosphere, 9(5), 18311844 (doi: 10.5194/tc-9-1831-2015)

S O'Neel , WT Pfeffer , R Krimmel and M Meier (2005) Evolving force balance at Columbia Glacier, Alaska, during its rapid retreat. J. Geophys. Res., 110(F3), 118 (doi: 10.1029/2005JF000292)

F Pattyn (2003) A new three-dimensional higher-order thermomechanical ice sheet model: basic sensitivity, ice stream development, and ice flow across subglacial lakes. J. Geophys. Res., 108(B8), 115 (doi: 10.1029/2002JB002329)

E Rignot , I Fenty , D Menemenlis and Y Xu (2012) Spreading of warm ocean waters around Greenland as a possible cause for glacier acceleration. Ann. Glaciol., 53(60), 257266 (doi: 10.3189/2012AoG60A136)

R Sciascia , F Straneo , C Cenedese and P Heimbach (2013) Seasonal variability of submarine melt rate and circulation in an East Greenland fjord. J. Geophys. Res., 118, 115 (doi: 10.1002/jgrc.20142)

A Shepherd and 45 others (2012) A reconciled estimate of ice-sheet mass balance. Science (80-.), 338, 11831189 (doi: 10.1126/science.1228102)

DA Slater , PW Nienow , TR Cowton , DN Goldberg and AJ Sole (2015) Effect of near-terminus subglacial hydrology on tidewater glacier submarine melt rates. Geophys. Res. Lett., 42, 18 (doi: 10.1002/2014GL062494)

LA Stearns and 6 others (2015) Glaciological and marine geological controls on terminus dynamics of Hubbard Glacier, southeast Alaska. J. Geophys. Res. Earth Surf., 120, 10651081 (doi: 10.1002/2014JF003341)

F Straneo and 6 others (2011) Impact of fjord dynamics and glacial runoff on the circulation near Helheim Glacier. Nat. Geosci., 4(5), 322327 (doi: 10.1038/ngeo1109)

F Straneo and 8 others (2012) Characteristics of ocean waters reaching Greenland's glaciers. Ann. Glaciol., 53(60), 202210 (doi: 10.3189/2012AoG60A059)

F Straneo and 15 others (2013) Challenges to understanding the dynamic response of Greenland's marine terminating glaciers to oceanic and atmospheric forcing. Bull. Amer. Meteor. Soc., 94(8), 11311144 (doi: 10.1175/BAMS-D-12-00100.1)

DA Sutherland , F Straneo and RS Pickart (2014) Characteristics and dynamics of two major Greenland glacial fjords. J. Geophys. Res. Ocean., 119, 37673791 (doi: 10.1002/2013JC009786)

AJ Tedstone , PW Nienow , N Gourmelen and AJ Sole (2014) Greenland ice sheet annual motion insensitive to spatial variations in subglacial hydraulic structure. Geophys. Res. Lett., 41, 89108917 (doi: 10.1002/2014GL062386)

RH Thomas (2004) Force-perturbation analysis of recent thinning and acceleration of Jakobshavn Isbrae, Greenland. J. Glaciol., 50(168), 5766 (doi: 10.3189/172756504781830321)

CJ van der Veen , JC Plummer and LA Stearns (2011) Controls on the recent speed-up of Jakobshavn Isbræ, West Greenland. J. Glaciol., 57(204), 770782

CJ van der Veen , LA Stearns , J Johnson and B Csatho (2014) Flow dynamics of Byrd Glacier, East Antarctica. J. Glaciol., 60(224), 10531064 (doi: 10.3189/2014JoG14J052)

CL Vernon and 6 others (2013) Surface mass balance model intercomparison for the Greenland ice sheet. Cryosphere, 7, 599614 (doi: 10.5194/tcd-6-3999-2012)

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Annals of Glaciology
  • ISSN: 0260-3055
  • EISSN: 1727-5644
  • URL: /core/journals/annals-of-glaciology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Type Description Title
PDF
Supplementary Materials

Bartholomaus supplementary material
Tables S1-S2

 PDF (41 KB)
41 KB

Metrics

Full text views

Total number of HTML views: 9
Total number of PDF views: 166 *
Loading metrics...

Abstract views

Total abstract views: 246 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 26th April 2017. This data will be updated every 24 hours.