Skip to main content
×
×
Home

Developing a hot-water drill system for the WISSARD project: 2. In situ water production

  • Daren S. Blythe (a1), Dennis V. Duling (a1) and Dar E. Gibson (a1)
Abstract

Successful hot-water drilling in the Antarctic is predicated on utilization of the abundant water supply available in the form of the Antarctic ice sheet. For WISSARD (Whillans Ice Stream Subglacial Access Research Drilling) field operations, a snowmelting system was developed that could adequately provide water for a 1000 kW hot-water drill. The system employs ∼100 kW of waste heat from a 225 kW generator to melt snow for initial water (known as seed water) to prime the drill’s high-pressure pumps and water heaters; once the water heaters can be engaged in snowmelting, enough water can be supplied directly to the WISSARD drill to successfully melt a 40 cm diameter hole through 800 m of ice.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Developing a hot-water drill system for the WISSARD project: 2. In situ water production
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Developing a hot-water drill system for the WISSARD project: 2. In situ water production
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Developing a hot-water drill system for the WISSARD project: 2. In situ water production
      Available formats
      ×
Copyright
References
Hide All
Benson, T and 9 others (2014) IceCube Enhanced Hot Water Drill functional description. Ann. Glaciol., 55(68) (doi: 10.3189/2014AoG68A032) (see paper in this issue)
Lunardini, VJ and Rand, J (1995) Thermal design of an Antarctic water well. CRREL Spec. Rep. 95-10
Priscu, JC and 12 others (2013) A microbiologically clean strategy for access to the Whillans Ice Stream subglacial environment. Antarct. Sci., 25(5), 637647 (doi: 10.1017/S0954102013000035)
Rack, FR and others (2014) Developing a hot-water drill system for the WISSARD project: 1 . Basic drill system components and design. Ann. Glaciol., 55(68) (doi: 10.3189/2014AoG68A031) (see paper in this issue)
Schmitt, R and Rodriguez, R (1963) Glacier water supply and sewage disposal systems. In Symposium on Antarctic Logistics, 13–17 August 1962, Boulder, Colorado, USA. National Academy of Sciences, National Research Council, Washington, DC, 329338
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Annals of Glaciology
  • ISSN: 0260-3055
  • EISSN: 1727-5644
  • URL: /core/journals/annals-of-glaciology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed