Skip to main content Accessibility help
×
×
Home

Elevation-dependent behavior of hoar-prominent snowpack on forest slopes in the Japanese Central Alps based on a decade of observations

  • Yusuke Harada (a1), Ryuzo Wakabayashi (a2) and Yoshikage Inoue (a3)

Abstract

Full snow-pit observations were performed on a monthly basis over ten winter seasons from 1995 to 2004, at 15 study plots spaced at 100 m elevation intervals (1300–2700 m a.s.l.) in the mountainous forest of the Japanese Central Alps. We observed 514 pits with an average depth of 1.12 m. Density measurements were taken in 2610 snow layers in total. Monthly trends indicate that snow depth has a strong linear correlation with elevation and that the mean density of snow cover has a moderate linear correlation with elevation in midwinter. Snow water equivalent can increase as a quadratic function of elevation in January and February. For this reason, the influence of overburden load and wind packing is elevation-dependent from January to February, a period when a facet-prominent snowpack existed on account of low snow and air temperatures. The density of depth hoar is greater at higher elevations than it is for rounded grains in midwinter due to densification. On forested slopes, with increasing elevation, snowfall frequency and the impact of wind upon snow increases while air temperature decreases, causing elevational variance in grain shapes.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Elevation-dependent behavior of hoar-prominent snowpack on forest slopes in the Japanese Central Alps based on a decade of observations
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Elevation-dependent behavior of hoar-prominent snowpack on forest slopes in the Japanese Central Alps based on a decade of observations
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Elevation-dependent behavior of hoar-prominent snowpack on forest slopes in the Japanese Central Alps based on a decade of observations
      Available formats
      ×

Copyright

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

References

Hide All
Akitaya, E (1974) Studies on Depth Hoar. Contributions from the Institute of Low Temperature Science, A26, 167
Armstrong, RL and Armstrong, BR (1987) Snow and avalanche climates of the western United States: a comparison of maritime, intermountain and continental conditions. IAHS Publ. 162 (Symposium at Davos 1986 – Avalanche Formation, Movement and Effects), 281–294
Canadian Avalanche Association (1995) Observation guidelines and recording standards for weather, snowpack and avalanches. Canadian Avalanche Association, Revelstoke, BC, Canada, 98 pp
Deems, JS, Painter, TH and Finnegan, DC (2013) Lidar measurement of snow depth: a review. J. Glaciol., 59(215), 467479 (doi: 10.3189/2013JoG12J154)
Dressler, KA, Leavesley, GH, Bales, RC and Fassnacht, SR (2006) Evaluation of gridded snow water equivalent and satellite snow cover products for mountain basins in a hydrologic model. Hydrol. Process., 20, 673688 (doi: 10.1002/hyp.6130)
Haegeli, P and McClung, DM (2003) Avalanche characteristics of a transitional snow climate – Columbia Mountains, British Columbia, Canada. Cold Reg. Sci. Technol., 37(3), 255276 (doi: 10.1016/S0165-232X(03)00069-7)
Helms, D, Phillips, SE and Reich, PF (2008) The History of Snow Survey and Water Supply Forecasting: Interviews with US Department of Agriculture Pioneers, Natural Resources Conservation Service, US Department of Agriculture, 306pp
Ikeda, S, Wakabayashi, R, Izumi, K and Kawashima, K (2009) Study of snow climate in the Japanese Alps: comparison to snow climate in North America. Cold Reg. Sci. Technol., 59, 119125 (doi: 10.1016/j.coldregions.2009.09.004)
Ishizaka, M (2008) Reassessment of climatic conditions in ‘depth-hoar region’ and new map for climatic division of snow-covered areas in Japan based on the new conditions. J. Jpn. Soc. Snow Ice, 70(1), 313 [In Japanese with English abstract]
Kojima, K (1956) Viscous compression of natural snow-layer, II. Low Temp. Sci., A15, 117136 [In Japanese with English resume]
Kojima, K (1959) The influence of temperature gradient upon the grain texture, setting rate and brittleness of snow. Low Temp. Sci., A18, 2945 [In Japanese with English resume]
Laternser, M and Schneebeli, M (2003) Long-term snow climate trends of the Swiss Alps (1931–99). J. Climatol., 23, 733750 (doi: 10.1002/joc.912)
Matsuyama, M (1998) A review on the snow surveys conducted in mountainous regions in Japan to determine distribution factors. J. Jpn. Soc. Hydrol. Water Resour., 11(2), 164174 (doi: 10.3178/jjshwr.11.164) [In Japanese with English abstract]
Mock, CJ and Birkeland, KW (2000) Snow avalanche climatology of the western United States mountain ranges. Bull. Am. Meteorol. Soc. 81, 23672392. (doi: 10.1175/1520-0477(2000)081<2367:SACOTW>2.3.CO;2)
Mote, PW, Hamlet, AF, Clark, MP and Lettenmaier, DP (2005) Declining mountain snowpack in western North America. Am. Meteorol. Soc., 82, 399415 (doi: 10.1175/BAMS-86-1-39)
Pielmeier, C and Schneebeli, M (2003) Developments in the stratigraphy of snow. Surv. Geophys., 24, 389416 (doi: 10.1023/B:GEOP.0000006073.25155.b0)
Schmucki, E, Marty, C, Fierz, C and Lehning, M (2014) Evaluation of modelled snow depth and snow water equivalent at three contrasting sites in Switzerland using SNOWPACK simulations driven by different meteorological data input. Cold Reg. Sci. Technol., 99, 2737 (doi: 10.1016/j.coldregions.2013.12.004)
Sturm, M (2015) Cryosphere: Snow (Surface). Encyclopedia of Atmospheric Sciences (Second Edition), 2, 227236 (doi: 10.1016/B978-0-12-382225-3.00367-4)
Takeuchi, M (1996) Mechanism of blowing-snow (1). J. Jpn Soc. Snow Ice, 58(2), 161168 (doi: 10.5331/seppyo.58.161) [in Japanese]
Wakabayashi, R, Ito, Y and Harada, Y and 9 others (2007) The elevation-dependent behavior of mountain snowpack. Bull. Shinshu Univ. AFC, 5, 107131 [In Japanese with English abstract]
Yamada, T (1983) Studies on accumulation-ablation processes and distribution of snow in mountain regions, Hokkaido. Contributions from the Institute of Low Temperature Science, A31, 133
Yamada, T, Hasemi, T, Izumi, K and Sato, A (1974) On the dependencies of the velocities of P and S waves and thermal conductivity of snow upon the texture of snow. Low Temp. Sci., A32, 7180 [In Japanese with English summary]
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Annals of Glaciology
  • ISSN: 0260-3055
  • EISSN: 1727-5644
  • URL: /core/journals/annals-of-glaciology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Type Description Title
PDF
Supplementary materials

Harada et al. supplementary material
Harada et al. supplementary material 1

 PDF (3.3 MB)
3.3 MB

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed