Skip to main content Accessibility help
×
×
Home

Estimation of sea-ice thickness and volume in the Sea of Okhotsk based on ICESat data

  • Sohey Nihashi (a1), Nathan T. Kurtz (a2), Thorsten Markus (a2), Kay I. Ohshima (a3), Kazutaka Tateyama (a4) and Takenobu Toyota (a3)...
Abstract

Sea-ice thickness in the Sea of Okhotsk is estimated for 2004–2008 from ICESat derived freeboard under the assumption of hydrostatic balance. Total ice thickness including snow depth (htot) averaged over 2004–2008 is 95 cm. The interannual variability of htot is large; from 77.5 cm (2008) to 110.4 cm (2005). The mode of htot varies from 50–60 cm (2007 and 2008) to 70–80 cm (2005). Ice thickness derived from ICESat data is validated from a comparison with that observed by Electromagnetic Induction Instrument (EM) aboard the icebreaker Soya near Hokkaido, Japan. Annual maps of htot reveal that the spatial distribution of htot is similar every year. Ice volume of 6.3 × 1011 m3 is estimated from the ICESat derived htot and AMSR-E derived ice concentration. A comparison with ice area demonstrates that the ice volume cannot always be represented by the area solely, despite the fact that the area has been used as a proxy of the volume in the Sea of Okhotsk. The ice volume roughly corresponds to that of annual ice production in the major coastal polynyas estimated based on heat budget calculations. This also supports the validity of the estimation of sea-ice thickness and volume using ICESat data.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Estimation of sea-ice thickness and volume in the Sea of Okhotsk based on ICESat data
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Estimation of sea-ice thickness and volume in the Sea of Okhotsk based on ICESat data
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Estimation of sea-ice thickness and volume in the Sea of Okhotsk based on ICESat data
      Available formats
      ×
Copyright
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
References
Hide All
Allison, I and Worby, AP (1994) Seasonal changes of sea-ice characteristics off East Antarctica. Ann. Glaciol., 20, 195201
Cavalieri, DJ and Parkinson, CL (2012) Arctic sea ice variability and trends, 1979–2010. Cryosphere 6(4), 881889 (doi: 10.5194/tc-6-881-2012)
Cavalieri, DJ, Markus, T and Comiso, JC (2004) AMSR-E/Aqua daily L3 12.5 km Sea Ice concentration. Boulder. NASA National Snow and Ice Data Center Distributed Active Archive Center, Colorado, USA (doi: 10.5067/AMSR-E/AE_SI12.003)
Dai, A, Qian, T, Trenberth, KE and Milliman, JD (2009) Changes in continental freshwater discharge from 1948 to 2004. J. Clim., 22, 27732792
Forsberg, R and Skourup, H (2005) Arctic Ocean gravity, geoid and sea-ice freeboard heights from ICESat and GRACE. Geophys. Res. Lett., 32, L21502 (doi: 10.1029/2005GL023711)
Fukamachi, Y and 5 others (2003) Variability of sea-ice draft off Hokkaido in the Sea of Okhotsk revealed by a moored ice-profiling sonar in winter of 1999. Geophys. Res. Lett., 30(7), 1376 (doi: 10.1029/2002GL016197)
Fukamachi, Y and 5 others (2006) Sea ice thickness in the southwestern Sea of Okhotsk revealed by a moored ice-profiling sonar. J. Geophys. Res., 111, C09018 (doi: 10.1029/2005JC003327)
Fukamachi, Y and 8 others (2009) Direct observations of sea-ice thickness and brine rejection off sakhalin in the Sea of Okhotsk. Cont. Shelf Res., 29, 15411548
Gloersen, P and 5 others (1992) Arctic and Antarctic sea ice, 1978–1987: satellite passive microwave observations and analysis. NASA SP-511, Scientific and Technical Information Program, NASA, Washington, DC
Haumann, FA, Gruber, N, Münnich, M, Frenger, I and Kern, S (2016) Sea-ice transport driving Southern Ocean salinity and its recent trends. Nature, 537, 8992 (doi: 10.1038/nature19101)
Jeffries, MO, Worby, AP, Morris, K and Weeks, WF (1997) Seasonal variations in the properties and structural composition of sea ice and snow cover in the Bellingshausen and Amundsen Seas, Antarctic. J. Glaciol., 43(143), 138151
Kanna, N, Toyota, T and Nishioka, J (2014) Iron and nutrient concentration in the sea ice and its impact on surface nutritional status in the southern Okhotsk Sea. Prog. Ocean., 126, 4457
Kashiwase, H, Ohshima, KI and Nihashi, S (2014) Long-term variation in sea ice production and its relation to intermediate water in the Sea of Okhotsk. Prog. Ocean., 126, 2132 (doi: 10.1016/j.pocean.2014.05.004)
Kern, S and Spreen, G (2015) Uncertainties in Antarctic sea-ice thickness retrieval from ICESat. Ann. Glaciol., 56(69), 107119
Kimura, N and Wakatsuchi, M (2000) Relationship between sea-ice motion and geostrophic wind in the Northern Hemisphere. Geophys. Res. Lett., 27(22), 37353738
Kowalik, Z and Polyakov, I (1998) Tides in the Sea of Okhotsk. J. Phys. Oceanogr., 28, 13891409
Kurtz, NT and Markus, T (2012) Satellite observations of Antarctic sea ice thickness and volume. J. Geophys. Res., 117, C08025 (doi: 10.1029/2012JC008141)
Kurtz, NT and 6 others (2009) Estimation of sea ice thickness distributions through the combination of snow depth and satellite laser altimetry data. J. Geophys. Res., 114, C10007 (doi: 10.1029/2009JC005292)
Kwok, R and Rothrock, DA (1999) Variability of Fram Strait ice flux and North Atlantic Oscillation. J. Geophys. Res., 104, 51775189 (doi: 10.1029/1998JC900103)
Kwok, R, Zwally, HJ and Yi, D (2004) ICESat observations of Arctic sea ice: a first look. Geophys. Res. Lett., 31, L16401 (doi: 10.1029/2004GL020309)
Kwok, R, Cunningham, GF, Zwally, HJ and Yi, D (2006) ICESat over Arctic sea ice: interpretation of altimetric and reflectivity profiles. J. Geophys. Res., 111, C06006 (doi: 10.1029/2005JC003175)
Kwok, R, Cunningham, GF, Zwally, HJ and Yi, D (2007) Ice, cloud, and land elevation satellite (ICESat) over Arctic sea ice: retrieval of freeboard. J. Geophys. Res., 112, C12013 (doi:10.1029/2006JC003978)
Kwok, R and 5 others (2009) Thinning and volume loss of the Arctic ocean sea ice cover: 2003–2008. J. Geophys. Res., 114, C07005 (doi: 10.1029/2009JC005312)
Laxon, SW and 14 others (2013) CryoSat-2 estimates of Arctic sea ice thickness and volume. Geophys. Res. Lett., 40, 732737 (doi: 10.1002/grl.50193)
Markus, T and 5 others (2011) Freeboard, snow depth and sea-ice roughness in East Antarctica from in situ and multiple satellite data. Ann. Glaciol., 52(57), 242248
Nakamura, K and 5 others (2006) Sea-ice thickness retrieval in the Sea of Okhotsk using dual-polarization SAR data. Ann. Glaciol., 44(1), 261268
Nakanowatari, T, Ohshima, KI and Wakatsuchi, M (2007) Warming and oxygen decrease of intermediate water in the northwestern North Pacific, originating from the Sea of Okhotsk, 1995–2004. Geophys. Res. Lett., 34, L04602 (doi: 10.1029/2006GL028243)
Nihashi, S, Ohshima, KI, Tamura, T, Fukamachi, Y and Saitoh, S (2009) Thickness and production of sea ice in the Okhotsk Sea coastal polynyas from AMSR-E. J. Geophys. Res., 114, C10025 (doi: 10.1029/2008JC005222)
Nihashi, S, Ohshima, KI and Nakasato, H (2011) Sea-ice retreat in the Sea of Okhotsk and the ice–ocean albedo feedback effect on it. J. Oceanogr., 67, 551562 (doi: 10.1007/s10872-011-0056-x)
Nihashi, S, Ohshima, KI and Kimura, N (2012) Creation of a heat and salt flux dataset associated with sea-ice production and melting in the Sea of Okhotsk. J. Clim., 25, 22612278 (doi: 10.1175/JCLI-D-11-00022.1)
Nihashi, S, Ohshima, KI and Saitoh, SI (2017) Sea-ice production in the northern Japan Sea. Deep Sea Res. I, 127, 6576 (doi: 10.1016/j.dsr.2017.08.003)
Nishioka, J and 12 others (2007) Iron supply to the western subarctic Pacific: importance of iron export from the Sea of Okhotsk. J. Geophys. Res., 112, C10012 (doi: 10.1029/2006JC004055)
Ohshima, KI and 7 others (2001) Winter oceanographic conditions in the southwestern part of the Okhotsk Sea and their relation to sea ice. J. Oceanogr., 57, 451460
Ohshima, KI, Watanabe, T and Nihashi, S (2003) Surface heat budget of the Sea of Okhotsk during 1987– 2001 and the role of sea ice on it. J. Meteorol. Soc. Jpn., 81, 653677
Ohshima, KI, Nakanowatari, T, Riser, S, Volkov, Y and Wakatsuchi, M (2014) Freshening and dense shelf water reduction in the Okhotsk Sea linked with sea ice decline. Prog. Oceanogr., 126, 7179
Ohshima, KI, Nihashi, S and Iwamoto, K (2016) Global view of sea-ice production in polynyas and its linkage to dense/bottom water formation. Geosci. Lett., 3(13) (doi: 10.1186/s40562-016-0045-4)
Polyakov, I and Martin, S (2000) Interaction of the Okhotsk Sea diurnal tides with the Kashevarov bank polynya, J. Geophys. Res., 105, 32813294 (doi: 10.1029/1999JC900308)
Shcherbina, AY, Talley, LD and Rudnick, DL (2003) Direct observations of North Pacific ventilation: brine rejection in the Okhotsk Sea. Science, 302, 19521955
Simizu, D, Ohshima, KI, Ono, J, Fukamachi, Y and Mizuta, G (2014) What drives the southward drift of sea ice in the Sea of Okhotsk? Prog. Oceanogr. 126, 3343
Talley, LD (1991) An Okhotsk water anomaly: implications for ventilation in the North Pacific. Deep Sea Res., 38(Suppl. 1), S171S190
Toyota, T, Kawamura, T, Ohshima, KI, Shimoda, H and Wakatsuchi, M (2004) Thickness distribution, texture and stratigraphy, and a simple probabilistic model for dynamical thickening of sea ice in the southern Sea of Okhotsk. J. Geophys. Res., 109, C6 (doi: 10.1029/2003JC002090)
Toyota, T, Takatsuji, S, Tateyama, K, Naoki, K and Ohshima, KI (2007) Properties of sea ice and overlying snow in the southern Sea of Okhotsk. J. Oceanogr., 63, 393411
Toyota, T, Nakamura, K, Uto, S, Ohshima, KI and Ebuchi, N and (2009) Retrieval of sea ice thickness distribution in the seasonal ice zone from air-borne L-band SAR. Int. J. Remote Sens., 30(12), 31713189
Toyota, T, Ono, S, Cho, K and Ohshima, KI (2011) Retrieval of sea-ice thickness distribution in the Sea of Okhotsk from ALOS/PALSAR backscatter data. Ann. Glaciol., 52(57), 177184
Tateyama, K and 5 others (2006) Standardization of electromagnetic-induction measurements of sea-ice thickness in polar and subpolar seas. Ann. Glaciol., 44(1), 240246
Uto, S, Toyota, T, Shimoda, H, Tateyama, K and Shirasawa, K (2006) Ship-borne electromagnetic induction sounding of sea-ice thickness in the southern Sea of Okhotsk. Ann. Glaciol., 44(1), 253260
Wadhams, P, Lange, MA and Ackley, SF (1987) The ice thickness distribution across the Atlantic sector of the Antarctic Ocean in midwinter. J. Geophys. Res., 92(C13), 14,53515,552
Warner, MJ, Bullister, JL, Wisegarver, DP and Gammon, RH (1996) Basin-wide distributions of chlorofluorocarbons CFC-11 and CFC-12 in the North Pacific: 1985–1989. J. Geophys. Res., 101, 20,52520,542
Warren, SG and 6 others (1999), Snow depth on Arctic sea ice. J. Clim., 12, 18141829
Watanabe, T, Ikeda, M and Wakatsuchi, M (2004) Thermohaline effects of the seasonal sea ice cover in the Sea of Okhotsk. J. Geophys. Res., 109, C09S02 (doi: 10.1029/2003JC001905)
Zwally, HJ and 15 others (2002) ICESat's laser measurements of polar ice, atmosphere, ocean, and land. J. Geodyn., 34, 405445 (doi:10.1016/S0264-3707(02)00042-X)
Zwally, HJ and 7 others (2003) GLAS/ICESat L2 Sea Ice Altimetry Data V531, Oct. 2003 to March 2008, http://nsidc.org/data/gla13.html, Natl. Snow and Ice Data Cent., Boulder, Colo
Zwally, HJ, Yi, D, Kwok, R and Zhao, Y (2008) ICESat measurements of sea ice freeboard and estimates of sea ice thickness in the Weddell Sea. J. Geophys. Res., 113, C02S15 (doi: 10.1029/2007JC004284)
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Annals of Glaciology
  • ISSN: 0260-3055
  • EISSN: 1727-5644
  • URL: /core/journals/annals-of-glaciology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed