Skip to main content Accessibility help
×
Home

Evidence for significant protein-like dissolved organic matter accumulation in Sea of Okhotsk sea ice

  • Mats A. Granskog (a1), Daiki Nomura (a2), Susann Müller (a3), Andreas Krell (a4), Takenobu Toyota (a2) and Hiroshi Hattori (a5)...

Abstract

Absorption and fluorescence of chromophoric dissolved organic matter (CDOM) in sea ice and surface waters in the southern Sea of Okhotsk was examined. Sea-water CDOM had featureless absorption increasing exponentially with shorter wavelengths. Sea ice showed distinct absorption peaks in the ultraviolet, especially in younger ice. Older first-year sea ice had relatively flat absorption spectra in the ultraviolet range. Parallel factor analysis (PARAFAC) identified five fluorescent CDOM components, two humic-like and three protein-like. Sea water was largely governed by humic-like fluorescence. In sea ice, protein-like fluorescence was found in considerable excess relative to sea water. The accumulation of protein-like CDOM fluorescence in sea ice is likely a result of biological activity within the ice. Nevertheless, sea ice does not contribute excess CDOM during melt, but the material released will be of different composition than that present in the underlying waters. Thus, at least transiently, the CDOM introduced during sea-ice melt might provide a more labile source of fresher protein-like DOM to surface waters in the southern Sea of Okhotsk.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Evidence for significant protein-like dissolved organic matter accumulation in Sea of Okhotsk sea ice
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Evidence for significant protein-like dissolved organic matter accumulation in Sea of Okhotsk sea ice
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Evidence for significant protein-like dissolved organic matter accumulation in Sea of Okhotsk sea ice
      Available formats
      ×

Copyright

References

Hide All
Belzile, C, Johannessen, SC Gosselin, M, Demers, S and Miller, WL (2000) Ultraviolet attenuation by dissolved and particulate constituents of first-year ice during late spring in an Arctic polynya. Limnol. Oceanogr., 45(6), 12651273 (doi: 10.4319/ lo.2000.45.6.1265)
Blough, NV and Del, Vecchio, R (2000) Choromophoric DOM in the coastal environment. In Hansell DA and Carlson CA eds. Biogeochemistry of marine dissolved organic matter. Academic Press, San Diego, CA, 509546
Bricaud, A, Morel, A and Prieur, L (1981) Absorption by dissolved organic matter of the sea (yellow substance) in the UV and visible domains. Limnol. Oceanogr., 26(1), 4353 (doi: 10.4319/ lo.1981.26.1.0043)
Coble, PG (1996) Characterization of marine and terrestrial DOM in seawater using excitation–emission matrix spectroscopy. Mar. Chem., 51(4), 325346 (doi: 10.1016/0304-4203(95)00062-3)
Ehn, J, Granskog, MA Reinart, A and Erm, A (2004) Optical properties of melting landfast sea ice and underlying seawater in Santala Bay, Gulf of Finland. J. Geophys. Res., 109(C9), (C09003) (doi: 10.1029/2003JC002042)
Ertel, JR Hedges, JI Devol, AH Richey, Je and de Nazaré, Góes Ribeiro, M (1986) Dissolved humic substances of the Amazon River system. Limnol. Oceanogr., 31(4), 739754 (doi: 10.4319/ lo.1986.31.4.0739)
Furuya, K, Hayashi, M and Yabushita, Y (1998) HPLC determination of phytoplankton pigments using N,N-dimethylformamide. J. Oceanogr., 54(2), 199203 (doi: 10.1007/BF02751695)
Granskog, M (2000) Observations of particulate matter in the ice of the Sea of Okhotsk and Saroma-ko lagoon. Low Temp. Sci., Ser., A, Data Rep.. 58, 6371
Granskog, MA Macdonald, RW Mundy, C-J and Barber, DG (2007) Distribution, characteristics and potential impacts of chromophoric dissolved organic matter (CDOM) in Hudson Strait and Hudson Bay, Canada. Continental Shelf Res., 27(15), 20322050 (doi: 10.1016/j.csr.2007.05.001)
Granskog, MA Kaartokallio, H and Kuosa, H (2010)Sea ice in non-polar regions. In Thomas DN and Dieckmann GS eds. Sea ice. Wiley-Blackwell, Chichester, 531577
Hansell, DA and Carlson, Ca eds. (2002) Biogeochemistry of marine dissolved organic matter.. Academic Press, San Diego
Hill, VJ (2008) Impacts of chromophoric dissolved organic material on surface ocean heating in the Chukchi Sea. J. Geophys. Res., 113(C7), (C07024) (doi: 10.1029/2007JC004119)
Kimura, N and Wakatsuchi, M (2004) Increase and decrease of sea ice area in the Sea of Okhotsk: ice production in coastal polynyas and dynamic thickening in convergence zones. J. Geophys. Res., 109(C9), (C09S03) (doi: 10.1029/2003JC001901)
Kowalczuk, P, Durako, MJ Young, H, Kahn, AE Cooper, WJ and Gonsior, M (2009) Characterization of dissolved organic matter fluorescence in the South Atlantic Bight with use of PARAFAC model: interannual variability. Mar. Chem., 113(3–4), (182–196) (doi: 10.1016/j.marchem.2009.01.015)
Kudoh, S, Robineau, B, Suzuki, Y, Fujiyoshi, Y and Takahashi, M (1997) Photosynthetic acclimation and the estimation of temperate ice algal primary production in Saroma-ko Lagoon, Japan. J. Mar. Syst., 11(1–2), (93109) (doi: 10.1016/S0924-7963(96)00031-0)
Martin, S, Drucker, R and Yamashita, K (1998) The production of ice and dense shelf water in the Okhotsk Sea polynyas. J. Geophys. Res., 102(C12), (27771–27782) (doi: 10.1029/98JC02242)
McMinn, A and Hattori, H (2006) Effect of time of day on the recovery from light exposure in ice algae from Saroma-ko Lagoon, Hokkaido. Polar Biosci.. 20, 3036
McMinn, A, Hattori, H, Hirawake, T and Iwamoto, A (2008) Preliminary investigation of Okhotsk Sea ice algae: taxonomic composition and photosynthetic activity. Polar Biol., 31(8), 10111015 (doi: 10.1007/s00300-008-0433-0)
Mopper, K and Kieber, DJ (2002)Photochemistry and the cycling of carbon, sulfur, nitrogen and phosphorus. In Hansell DA and Carlson CA eds. Biogeochemistry of marine dissolved organic matter. Academic Press, San Diego, CA, 455507
Moran, MA and Zepp, RG (1997) Role of photoreactions in the formation of biologically labile compounds from dissolved organic matter. Limnol. Oceanogr., 42(6), 13071316
Müller, S, Vähätalo, AV Granskog, MA Autio, R and Kaartokallio, H (2011) Behaviour of dissolved organic matter during formation of natural and artificially grown Baltic Sea ice. Ann. Glaciol., 52(57 Pt 2), (233–241) (doi: 10.3189/172756411795931886)
Müller, S, Vähätalo, AV Stedmon, CA Granskog, MA Norman, L and Aslam SN (2013) Selective incorporation of dissolved organic matter (DOM) during sea ice formation. Mar. Chem., 155, 148157 (doi: 10.1016/j.marchem.2013.06.008)
Nakatsuka, T, Toda, M, Kawamura, K and Wakatsuchi, M (2004) Dissolved and particulate organic carbon in the Sea of Okhotsk: transport from continental shelf to ocean interior. J. Geophys. Res., 109(C9), (C09S14) (doi: 10.1029/2003JC001909)
Nomura, D, Takatsuka, T, Ishikawa, M, Kawamura, T, Shirasawa, K and Yoshikawa-Inoue, H (2009) Transport of chemical components in sea ice and under-ice water during melting in the seasonally ice-covered Saroma-ko Lagoon, Hokkaido, Japan. Estuar. Coast. Shelf Sci., 81(2), 201209 (doi: 10.1016/j.ecss.2008.10.012)
Nomura, D and 7 others (2010) Nutrient distributions associated with snow and sediment-laden layers in sea ice of the southern Sea of Okhotsk. Mar. Chem., 119(1–4), (1–8) (doi: 10.1016/ j.marchem.2009.11.005)
Nomura, D, McMinn, A, Hattori, H, Aoki, S and Fukuchi, M (2011) Incorporation of nitrogen compounds into sea ice from atmospheric deposition. Mar. Chem., 127(1–4), (90–99) (doi: 10.1016/ j.marchem.2011.08.002)
Norman, L and 9 others (2011) The characteristics of dissolved organic matter (DOM) and chromophoric dissolved organic matter (CDOM) in Antarctic sea ice. Deep-Sea Res. II, 58(9–10), (1075–1091) (doi: 10.1016/j.dsr2.2010.10.030)
Obernosterer, Iand Benner, R (2004) Competition between biological and photochemical processes in the mineralization of dissolved organic carbon. Limnol. Oceanogr., 49(1), 117124 (doi: 10.4319/lo.2004.49.1.0117)
Patsayeva, S, Reuter, R and Thomas, Dn (2004) Fluorescence of dissolved organic matter in seawater at low temperatures and during ice formation. EARSeL eProc.. 3, 227238
Robineau, B, Legendre, L, Kishino, M and Kudoh, S (1997) Horizontal heterogeneity of microalgal biomass in the first-year sea ice of Saroma-ko lagoon (Hokkaido, Japan). J. Mar. Syst., 11(1–2), (81–91) (doi: 10.1016/S0924-7963(96)00030-9)
Ryan, KG McMinn, A, Mitchell, KA and Trenerry, L (2002) Mycosporine-like amino acids in Antarctic sea ice algae, and their response to UVB radiation. Z. Naturforsch. C. 57, 471477
Scully, NM and Miller, WL (2000) Spatial and temporal dynamics of colored dissolved organic matter in the north water polynya. Geophys. Res. Lett., 27(7), 10091011 (doi: 10.1029/ 1999GL007002)
Shirasawa, K and Leppäranta, M (2003) Hydrometeorological and sea ice conditions in Saroma-ko lagoon, Hokkaido, Japan. In Proceedings of Seminar on Sea Ice Climate and Marine Environments in the Okhotsk and Baltic Seas: the Present Status and Prospects, 10–13 September 2001, Seili, Finland. (Report Series in Geophysics 46) University of Helsinki Press, Helsinki, 161168
Shirasawa, K, Leppäranta, M, Saloranta, T, Kawamura, T, Polomoshnov, A and Surkov, G (2005) The thickness of coastal fast ice in the Sea of Okhotsk. Cold Reg. Sci. Technol., 42(1), 2540 (doi: 10.1016/ j.coldregions.2004.11.003)
Stedmon, Ca and Bro, R (2008) Characterizing dissolved organic matter fluorescence with Parallel Factor Analysis: a tutorial. Limnol. Oceanogr.: Meth.. 6, 572579
Stedmon, CA Thomas, DN Granskog, , Kaartokallio, H, Papadimitriou, S and Kuosa, H (2007) Characteristics of dissolved organic matter in Baltic coastal sea ice: allochthonous or autochthonous origins. Environ. Sci. Technol., 41(21), 72737279 (doi: 10.1021/es071210f)
Stedmon, CA Thomas, DN Papadimitriou, S, Granskog MA and Dieckmann GS (2011) Using fluorescence to characterize dissolved organic matter in Antarctic sea ice brines. J. Geophys. Res., 116(G3), (G03027) (doi: 10.1029/2011JG001716)
Steinberg, DK Nelson, NB Carlson CA and Prusak, A (2004) Production of chromophoric dissolved organic matter (CDOM) in the open ocean by zooplankton and the colonial cyanobacterium Trichodesmium spp. Mar. Ecol. Progr. Ser., 267, 4556 (doi: 10.3354/meps267045)
Thurman, EM ed. (1985) Organic geochemistry of natural waters.. (Developments in Biogeochemistry 2) D Riedel, Dordrecht
Toyota, T, Kawamura, T, Ohshima, KI Shimoda, H and Wakatsuchi, M (2004) Thickness distribution, texture and stratigraphy, and a simple probabilistic model for dynamical thickening of sea ice in the southern Sea of Okhotsk. J. Geophys. Res., 109(C6), (C06001) (doi: 10.1029/2003JC002090)
Toyota, T, Takatsuji, S, Tateyama, K, Naoki, K and Ohshima, KI (2007) Properties of sea ice and overlying snow in the southern Sea of Okhotsk. J. Oceanogr., 63(3), 393411 (doi: 10.1007/s10872-007-0037-2)
Ukita, J, Kawamura, T, Tanaka, N, Toyota, Tand Wakatsuchi, M (2000) Physical and stable isotopic properties and growth processes of sea ice collected in the southern Sea of Okhotsk. J. Geophys. Res., 105(C9), (22083–22 093) (doi: 10.1029/1999JC000013)
Uusikivi, J, Vähätalo, AV Granskog, MA and Sommaruga, R (2010) Contribution of mycosporine-like amino acids and colored dissolved and particulate matter to sea ice optical properties and ultraviolet attenuation. Limnol. Oceanogr., 55(2), 703713 (doi: 10.4319/lo.2010.55.2.0703)
Vähätalo, AV and Zepp, RG (2005) Photochemical mineralization of dissolved organic nitrogen to ammonium in the Baltic Sea. Environ. Sci. Technol., 39(18), 69856992 (doi: 10.1021/ es050142z)
Woźniak, B and Dera, J (2007) Light absorption in sea water.. (Atmospheric and Oceanographic Sciences Library 33) Springer, New York
Yamamoto, M, Tanaka, N and Tsunogai, S (2001) Okhotsk Sea intermediate water formation deduced from oxygen isotope systematics. J. Geophys. Res., 106(C12), (31 075–31 084) (doi: 10.1029/2000JC000754)
Yamamoto, M, Watanabe, S, Tsunogai, S and Wakatsuchi, M (2002) Effects of sea ice formation and diapycnal mixing on the Okhotsk Sea intermediate water clarified with oxygen isotopes. Deep-Sea Res. I, 49(7), 11651174 (doi: 10.1016/S0967-0637(02)00032-8)

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed