Skip to main content
×
Home
    • Aa
    • Aa

Future fluctuations of Mer de Glace, French Alps, assessed using a parameterized model calibrated with past thickness changes

  • C. Vincent (a1), M. Harter (a1), A. Gilbert (a1), E. Berthier (a2) and D. SIX (a1)...
Abstract
Abstract

Simulations of glacier evolution are needed to assess future changes in the runoff regime of mountain catchments. A simplified parameterized model is applied here to simulate future thickness changes and glacier retreat of Mer de Glace, French Alps. A normalized thickness change function describing the spatial distribution of surface-elevation changes as a function of elevation has been determined. The model reveals that under present climatic conditions Mer de Glace will continue to shrink dramatically in the coming decades, retreating by 1200 m between now and 2040. The method has certain limitations related to the uncertainties of the normalized function based on thickness change data. An error of 10% in the normalized function leads to uncertainties of 46%, 30% and 18% in Mer de Glace front, surface area and glacier-wide mass-balance changes respectively in 2040. Because the difference of the normalized function largely exceeds 10% from one glacier to another, even within a given glacier size class and elevation range, it would be very risky to extrapolate the normalized function to unmeasured glaciers. Consequently, the method is applicable only on glaciers where past surface elevation changes are well constrained.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Future fluctuations of Mer de Glace, French Alps, assessed using a parameterized model calibrated with past thickness changes
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about sending content to Dropbox.

      Future fluctuations of Mer de Glace, French Alps, assessed using a parameterized model calibrated with past thickness changes
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about sending content to Google Drive.

      Future fluctuations of Mer de Glace, French Alps, assessed using a parameterized model calibrated with past thickness changes
      Available formats
      ×
Copyright
References
Hide All
AdhikariS and HuybrechtsP (2009) Numerical modelling of historical front variations and the 21st-century evolution of glacier AX010, Nepal Himalaya. Ann. Glaciol., 50(52), 2740 (doi: 10.3189/172756409789624346)
AdhikariS and MarshallSJ (2013) Influence of high-order mechanics on simulation of glacier response to climate change: insights from Haig Glacier, Canadian Rocky Mountains. Cryos. Discuss., 7(2), 17071748 (doi: 10.5194/tcd-7-1707-2013)
ArendtAA, EchelmeyerKA, HarrisonWD, LingleCS and ValentineVB (2002) Rapid wastage of Alaska glaciers and their contribution to rising sea level. Science, 297(5580), 382386 (doi: 10.1126/science.1072497)
BartholomausTC, AndersonRS and AndersonSP (2008) Response of glacier basal motion to transient water storage. Nature Geosci., 1(1), 3337 (doi: 10.1038/ngeo.2007.52)
BerthierE (2005) Dynamique et bilan de masse des glaciers de montagne (Alpes, Islande, Himalaya): contribution de l’imagerie satellitaire. (PhD thesis, Université Paul Sabatier)
BerthierE and VincentC (2012) Relative contribution of surface mass-balance and ice-flux changes to the accelerated thinning of Mer de Glace, French Alps, over 1979–2008. J. Glaciol., 58(209), 501512 (doi: 10.3189/2012JoG11J083)
BerthierE, ArnaudY, BaratouxD, VincentC and RémyF (2004) Recent rapid thinning of the Mer de Glace glacier derived from satellite optical images. Geophys. Res. Lett., 31(17), L17401 (doi: 10.1029/2004GL020706)
BindschadlerR (1982) A numerical model of temperate glacier flow applied to the quiescent phase of a surge-type glacier. J. Glaciol., 28(99), 239265
CasassaG, LópezP, PouyardB and EscobarF (2009) Detection of changes in glacial run-off in alpine basins: examples from North America, the Alps, central Asia and the Andes. Hydrol. Process., 23(1), 3141 (doi: 10.1002/ hyp.7194)
GabbiJ, FarinottiD, BauderA and MaurerH (2012) Ice volume distribution and implications on runoff projections in a glacierized catchment. Hydrol. Earth Syst. Sci., 16(12), 45434556 (doi: 10.5194/hess-16-4543-2012)
GiesenRH and OerlemansJ (2013) Climate-model induced differences in the 21st century global and regional glacier contributions to sea-level rise. Climate Dyn. (doi: 10.1007/ s00382-013-1743-7)
GluckS (1967) Détermination du lit rocheux sous la Mer de Glace par séismique-réflexion. C. R. Acad. Sci. (Paris), 264(19), 22722275
GreuellW (1992) Hintereisferner, Austria: mass-balance reconstruction and numerical modelling of the historical length variations. J. Glaciol., 38(129), 233244
GudmundssonGH (1999) A three-dimensional numerical model of the confluence area of Unteraargletscher, Bernese Alps, Switzerland. J. Glaciol., 45(150), 219230 (doi: 10.3189/ 002214399793377086)
HubbardA, BlatterH, NienowP, MairD and HubbardB (1998) Comparison of a three-dimensional model for glacier flow with field data from Haut Glacier d’Arolla, Switzerland. J. Glaciol., 44(147), 368378
HussM (2011) Present and future contribution of glacier storage change to runoff from macroscale drainage basins in Europe. Water Resour. Res., 47(W7), W07511 (doi: 10.1029/ 2010WR010299)
HussM and FarinottiD (2012) Distributed ice thickness and volume of all glaciers around the globe. J. Geophys. Res., 117(F4), F04010 (doi: 10.1029/2012JF002523)
HussM, FarinottiD, BauderA and FunkM (2008a) Modelling runoff from highly glacierized alpine drainage basins in a changing climate. Hydrol. Process., 22(19), 38883902 (doi: 10.1002/hyp.7055)
HussM, BauderA, FunkM and HockR (2008b) Determination of the seasonal mass balance of four Alpine glaciers since 1865. J. Geophys. Res., 113(F1), F01015 (doi: 10.1029/ 2007JF000803)
HussM, JouvetG, FarinottiD and BauderA (2010) Future high-mountain hydrology: a new parameterization of glacier retreat. Hydrol. Earth Syst. Sci., 14(5), 815829 (doi: 10.5194/hess-14-815-2010)
HussM, HockR, BauderA and FunkM (2012) Conventional versus reference-surface mass balance. J. Glaciol., 58(208), 278286 (doi: 10.3189/2012JoG11J216)
JóhannessonT, RaymondC and WaddingtonE (1989) Time-scale for adjustment of glaciers to changes in mass balance. J. Glaciol., 35(121), 355369
JouvetG, PicassoM, RappazJ and BlatterH (2008) A new algorithm to simulate the dynamics of a glacier: theory and applications. J. Glaciol., 54(188), 801811 (doi: 10.3189/ 002214308787780049)
Le MeurE and VincentC (2003) A two-dimensional shallow ice-flow model of Glacier de Saint-Sorlin, France. J. Glaciol., 49(167), 527538 (doi: 10.3189/172756503781830421)
Le MeurE, GerbauxM, SchäferM and VincentC (2007) Disappearance of an Alpine glacier over the 21st Century simulated from modeling its future surface mass balance. Earth Planet. Sci. Lett., 261(3–4), 367374 (doi: 10.1016/j.epsl.2007. 07.022)
LemkeP and 10 others (2007) Observations: changes in snow, ice and frozen ground. In Solomon S and 7 others eds. Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, 339383
Leysinger VieliGJMC and GudmundssonGH (2004) On estimating length fluctuations of glaciers caused by changes in climatic forcing. J. Geophys. Res., 109(F1), F01007 (doi: 10.1029/ 2003JF000027)
LliboutryL (1994) Multivariate statistical analysis of glacier annual balances. J. Glaciol., 13(69), 371-392
LliboutryL and ReynaudL (1981) ‘Global dynamics’ of a temperate valley glacier, Mer de Glace, and past velocities deduced from Forbes’ bands. J. Glaciol., 27(96), 207226
LüthiMP, BauderA and FunkM (2010) Volume change reconstruction of Swiss glaciers from length change data. J. Geophys. Res., 115(F4), F04022 (doi: 10.1029/ 2010JF001695)
MairD, WillisI, FischerUH, HubbardB, NienowP and HubbardA (2003) Hydrological controls on patterns of surface, internal and basal motion during three ‘spring events’: Haut Glacier d’Arolla, Switzerland. J. Glaciol., 49(167), 555567 (doi: 10.3189/ 172756503781830467)
MouginPL (1933) EÉ tudes glaciologiques. Tome VII. Direction des Eaux et du Génie Rural, Imprimerie Nationale, Paris
NussbaumerSU, ZumbühlHJ and SteinerD (2007) Fluctuations of the ‘Mer de Glacé (Mont Blanc area, France) AD 1500–2050: an interdisciplinary approach using new historical data and neural network simulations. Part I: the history of the Mer de Glace AD 1570–2003 according to pictorial and written documents. Z. Gletscherkd. Glazialgeol., (2005/06) 40
OerlemansJ (2007) Estimating response times of Vadret da Morteratsch, Vadret da Palu, Briksdalsbreen and Nigardsbreen from their length records. J. Glaciol., 53(182), 357362 (doi: 10.3189/002214307783258387)
OerlemansJ and 10 others (1998) Modelling the response of glaciers to climate warming. Climate Dyn., 14(4), 267274 (doi: 10.1007/s003820050222)
PaulF, KääbA and HaeberliW (2007) Recent glacier changes in the Alps observed from satellite: consequences for future monitoring strategies. Global Planet. Change, 56(1–2), 111122 (doi: 10.1016/j.gloplacha.2006.07.007)
PimentelS and FlowersGE (2011) A numerical study of hydrologically driven glacier dynamics and subglacial flooding. Proc. R. Soc. London, Ser. A, 467(2126), 537558 (doi: 10.1098/ rspa.2010.0211)
ReynaudL (1973) Etude de la dynamique des séracs du Géant (Massif du Mont-Blanc). (PhD thesis, Universiteé Scientifique et Médicale, Grenoble)
SalzmannN, MachguthH and LinsbauerA (2012) The Swiss Alpine glaciers’ response to the global ‘28C air temperature target’. Environ. Res. Lett., 7(4), 044001 (doi: 10.1088/1748-9326/7/4/ 044001)
SalzmannN and 6 others (2013) Glacier changes and climate trends derived from multiple sources in the data scarce Cordillera Vilcanota region, southern Peruvian Andes. Cryosphere, 7(1), 103118 (doi: 10.5194/tc-7-103-2013)
SchäferM. and E.Le Meur (2007) Improvement of a 2-D SIA iceflow model: application to Glacier de Saint-Sorlin, France. J. Glaciol., 53(183), 713722
SchwitterMP and RaymondCF (1993) Changes in the longitudinal profiles of glaciers during advance and retreat. J. Glaciol., 39(133), 582590
SpanN and KuhnM (2003) Simulating annual glacier flow with a linear reservoir model. J. Geophys. Res., 108(D10), 4313 (doi: 10.1029/2002JD002828)
SugiyamaS., BauderA, ZahnoC and FunkM (2007) Evolution of Rhonegletscher, Switzerland, over the past 125 years and in the future: application of an improved flowline model. Ann. Glaciol., 46, 268274
SüsstrunkAE (1951) Sondage du glacier par la méthode sismique. Sub-surface glacier investigations: seismic soundings. Houille Blanche, No. spécial A, 309318 (doi: 10.1051/lhb/1951010)
ThibertE and VincentC (2009) Best possible estimation of mass balance combining glaciological and geodetic methods. Ann Glaciol., 50(50), 112118
VallonM (1961) Épaisseur du glacier du Tacul (massif du Mont-Blanc). C. R. Séances Acad. Sci. (Paris), 252, 18151817
VallonM (1967) Contribution à l’étude de la Mer de Glace. (PhD thesis, Université de Grenoble)
VallotJ ed. (1905) Annales de l’Observatoire météorologique, physique et glaciaire du Mont Blanc (altitude 4,358 métres). Tome I à VI. G Steinheil, Paris
VincentC (2002) Influence of climate change over the 20th century on four French glacier mass balances. J. Geophys. Res., 107(D19), 4375 (doi: 10.1029/2001JD000832)
VincentC, VallonM, ReynaudL and Le MeurE (2000) Dynamic behaviour analysis of glacier de Saint Sorlin, France, from 40 years of observations, 1957–97. J. Glaciol., 46(154), 499506 (doi: 10.3189/172756500781833052)
VincentC, KappenbergerG, VallaF, BauderA, FunkM and Le MeurE (2004) Ice ablation as evidence of climate change in the Alps over the 20th century. J. Geophys. Res., 109(D10), D10104 (doi: 10.1029/2003JD003857)
VincentC, SorucoA, SixD and Le MeurE (2009) Glacier thickening and decay analysis from 50 years of glaciological observations performed on Glacier d’Argentiére, Mont Blanc area, France. Ann. Glaciol., 50(50), 7379 (doi: 10.3189/ 172756409787769500)
WallingaJ and Van de WalRSW (1998) Sensitivity of Rhonegletscher, Switzerland, to climate change: experiments with a one-dimensional flowline model. J. Glaciol., 44(147), 383393
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Annals of Glaciology
  • ISSN: 0260-3055
  • EISSN: 1727-5644
  • URL: /core/journals/annals-of-glaciology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 12 *
Loading metrics...

Abstract views

Total abstract views: 18 *
Loading metrics...

* Views captured on Cambridge Core between 26th July 2017 - 23rd October 2017. This data will be updated every 24 hours.