Skip to main content Accesibility Help

Glacier elevation and mass changes over the central Karakoram region estimated from TanDEM-X and SRTM/X-SAR digital elevation models

  • Melanie Rankl (a1) and Matthias Braun (a1)

Snow cover and glaciers in the Karakoram region are important freshwater resources for many down-river communities as they provide water for irrigation and hydropower. A better understanding of current glacier changes is hence an important informational baseline. We present glacier elevation changes in the central Karakoram region using TanDEM-X and SRTM/X-SAR DEM differences between 2000 and 2012. We calculated elevation differences for glaciers with advancing and stable termini or surge-type glaciers separately using an inventory from a previous study. Glaciers with stable and advancing termini since the 1970s showed nearly balanced elevation changes of -0.09 ±0.12 m a-1 on average or mass budgets of -0.01 ±0.02Gt a-1 (using a density of 850 kg m-3). Our findings are in accordance with previous studies indicating stable or only slightly negative glacier mass balances during recent years in the Karakoram. The high-resolution elevation changes revealed distinct patterns of mass relocation at glacier surfaces during active surge cycles. The formation of kinematic waves at quiescent surge-type glaciers could be observed and points towards future active surge behaviour. Our study reveals the potential of the TanDEM-X mission to estimate geodetic glacier mass balances, but also points to still existing uncertainties induced by the geodetic method.

    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Glacier elevation and mass changes over the central Karakoram region estimated from TanDEM-X and SRTM/X-SAR digital elevation models
      Available formats
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Glacier elevation and mass changes over the central Karakoram region estimated from TanDEM-X and SRTM/X-SAR digital elevation models
      Available formats
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Glacier elevation and mass changes over the central Karakoram region estimated from TanDEM-X and SRTM/X-SAR digital elevation models
      Available formats
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (, which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Corresponding author
Correspondence: Melanie Rankl <>
Hide All
Archer, D and Fowler, H (2004) Spatial and temporal variations in precipitation in the Upper Indus Basin: global teleconnections and hydrological implications. Hydrol. Earth Syst. Sci. 8(1), 4761 (doi: 10.5194/hess-8-47-2004)
Barrand, NE and Murray, T (2006) Multivariate controls on the incidence of glacier surging in the Karakoram Himalaya. Arct. Antarct. Alp. Res., 38(4), 489498 (doi: 10.1657/1523-0430 (2006)38[489:MCOTIO]2.0.CO;2)
Berthier, E, Arnaud, Y, Vincent, C and Rémy, F (2006) Biases of SRTM in high-mountain areas: implications for the monitoring of glacier volume changes. Geophys. Res. Lett., 33(8) (doi: 10.1029/2006GL025862)
Berthier, E, Arnaud, Y, Kumar, R, Ahmad, S, Wagnon, P and Chevallier, P (2007) Remote sensing estimates of glacier mass balances in the Himachal Pradesh (Western Himalaya, India). Remote Sens. Environ., 108(3), 327338 (doi: 10.1016/j.rse.2006.11.017)
Bolch, T and 11 others (2012) The state and fate of Himalayan glaciers. Science 336(6079), 310314 (doi: 10.1126/science. 1215828)
Clarke, GK, Collins, S and Thompson, D (1984) Flow, thermal structure, and subglacial conditions of a surge-type glacier. Can. J. Earth Sci., 21(2), 232240 (doi: 10.1139/e84-024)
Copland, L and 7 others (2011) Expanded and recently increased glacier surging in the Karakoram. Arct. Antarct. Alp. Res. 43(4), 503516 (doi: 10.1657/1938-4246-43.4.503)
Fritz, T, Rossi, C, Yague-Martinez, N, Rodriguez-Gonzalez, F, Lachaise, M and Breit, H (2011) Interferometric processing of TanDEM-X data. In IGARSS 2011, International Geoscience and Remote Sensing Symposium, 24–29 July 2011, Vancouver, B.C., Canada. Proceedings. Institute of Electrical and Electronics Engineers, Piscataway, NJ, 24282431 (doi: 10.1109/IGARSS.2011.6049701)
Gamma Remote Sensing (2007) GAMMA Differential Interferometry and Geocoding Software (DIFF/GEO). Gamma Remote Sensing, Gumligen
Gardelle, J, Berthier, E and Arnaud, Y (2012) Impact of resolution and radar penetration on glacier elevation changes computed from DEM differencing. J. Glaciol., 58(208), 419422 (doi: 10.3189/2012JoG11J175)
Gardelle, J, Berthier, E, Arnaud, Y and Kääb, A (2013) Region-wide glacier mass balances over the Pamir–Karakoram–Himalaya during 1999–2011. Cryosphere, 7(4), 12631286 (doi: 10.5194/tc-7-1263-2013)
Gardner, AS and 9 others (2013) A reconciled estimate of glacier contributions to sea level rise: 2003 to 2009. Science, 340(6134), 852857 (doi: 10.1126/science.1234532)
Goldstein, RM and Werner, CL (1998) Radar interferogram filtering for geophysical applications. Geophys. Res. Lett., 25(21), 40354038 (doi: 10.1029/1998GL900033)
Groh, A and 11 others (2014) Mass, volume and velocity of the Antarctic ice sheet: present-day changes and error effects. Surv. Geophys., 35(6), 14811505 (doi: 10.1007/s10712-014-9286-y)
Hewitt, K (1969) Glacier surges in the Karakoram Himalaya (central Asia). Can. J. Earth Sci. 6(4), 10091018 (doi: 10.1139/e69-106)
Hewitt, K (1998) Recent glacier surges in the Karakoram Himalaya, South Central Asia. Eos, 79(8), 104105
Hewitt, K (2007) Tributary glacier surges: an exceptional concentration at Panmah Glacier, Karakoram Himalaya. J. Glaciol. 53(181), 181188 (doi: 10.3189/172756507782202829)
Hewitt, K (2014) Glaciers of the Karakoram Himalaya: glacial environments, processes, hazards and resources. Springer, Berlin
Hoffmann, J and Walter, D (2006) How complementary are SRTM-X and-C band digital elevation models? Photogramm. Eng. Remote Sens., 72(3), 261268 (doi: 10.14358/PERS.72.3.261)
Huss, M (2013) Density assumptions for converting geodetic glacier volume change to mass change. Cryosphere 7(3), 877887 (doi: 10.5194/tc-7-877-2013)
Immerzeel, WW, Van Beek, LP and Bierkens, MF (2010) Climate change will affect the Asian water towers. Science, 328(5984), 13821385 (doi: 10.1126/science.1183188)
Kääb, A, Berthier, E, Nuth, C, Gardelle, J and Arnaud, Y (2012) Contrasting patterns of early twenty-first-century glacier mass change in the Himalayas. Nature 488(7412), 495498 (doi: 10.1038/nature11324)
Kääb, A, Treichler, D, Nuth, C and Berthier, E (2015) Brief Communication: Contending estimates of 2003–2008 glacier mass balance over the Pamir–Karakoram–Himalaya. Cryosphere, 9(2), 557564 (doi: 10.5194/tc-9-557-2015)
Kapnick, SB, Delworth, TL, Ashfaq, M, Malyshev, S and Milly, PCD (2014) Snowfall less sensitive to warming in Karakoram than in Himalayas due to a unique seasonal cycle. Nature Geosci., 7(11), 834840 (doi: 10.1038/ngeo2269)
Kaser, G, Großhauser, M and Marzeion, B (2010) Contribution potential of glaciers to water availability in different climate regimes. Proc. Natl Acad. Sci., 107(47), 20 22320 227 (doi: 10.1073/pnas.1008162107)
Kienholz, C, Rich, JL, Arendt, AA and Hock, R (2014) A new method for deriving glacier centerlines applied to glaciers in Alaska and northwest Canada. Cryosphere 8(2), 503519 (doi: 10.5194/tc- 8-503-2014)
Krieger, G and 6 others (2007) TanDEM-X: a satellite formation for high-resolution SAR interferometry. IEEE Trans. Geosci. Remote Sens., 45(11), 33173341 (doi: 10.1109/TGRS.2007.900693)
Ludwig, R and Schneider, P (2006) Validation of digital elevation models from SRTM X-SAR for applications in hydrologic modeling. ISPRS J. Photogramm. Remote Sens., 60(5), 339358 (doi: 10.1016/j.isprsjprs.2006.05.003)
Marzeion, B, Jarosch, AH and Hofer, M (2012) Past and future sealevel change from the surface mass balance of glaciers. Cryosphere 6(6), 12951322 (doi: 10.5194/tc-6-1295-2012)
Mätzler, C and Schanda, E (1984) Snow mapping with active microwave sensors. Remote Sens., 5(2), 409422 (doi: 10.1080/01431168408948816)
Mayer, C, Fowler, A, Lambrecht, A and Scharrer, K (2011) A surge of North Gasherbrum Glacier, Karakoram, China. J. Glaciol., 57(205), 904916 (doi: 10.3189/002214311798043834)
Meier, MF and Post, A (1969) What are glacier surges? Can. J. Earth Sci., 6(4), 807817 (doi: 10.1139/e69-081)
Moholdt, G, Nuth, C, Hagen, JO and Kohler, J (2010) Recent elevation changes of Svalbard glaciers derived from ICESat laser altimetry. Remote Sens. Environ., 114(11), 27562767 (doi: 10.1016/j.rse.2010.06.008)
Mölg, T, Maussion, F and Scherer, D (2014) Mid-latitude westerlies as a driver of glacier variability in monsoonal High Asia. Nature Climate Change, 4(1), 6873 (doi: 10.1038/nclimate2055)
Neckel, N, Braun, A, Kropáček, J and Hochschild, V (2013) Recent mass balance of the Purogangri Ice Cap, central Tibetan Plateau, by means of differential X-band SAR interferometry. Cryosphere, 7(5), 16231633 (doi: 10.5194/tc-7-1623-2013)
Neckel, N, Kropáček, J, Bolch, T and Hochschild, V (2014) Glacier mass changes on the Tibetan Plateau 2003–2009 derived from ICESat laser altimetry measurements. Environ. Res. Lett., 9(1), 014009 (doi: 10.1088/1748-9326/9/1/014009)
Quincey, DJ, Braun, M, Glasser, NF, Bishop, MP, Hewitt, K and Luckman, A (2011) Karakoram glacier surge dynamics. Geophys Res. Lett., 38, L18504 (doi: 10.1029/2011GL049004)
Radić, V and Hock, R (2011) Regionally differentiated contribution of mountain glaciers and ice caps to future sea-level rise. Nature Geosci., 4(2), 9194 (doi: 10.1038/ngeo1052)
Rankl, M, Kienholz, C and Braun, M (2014) Glacier changes in the Karakoram region mapped by multimission satellite imagery. Cryosphere 8(3), 977989 (doi: 10.5194/tc-8-977-2014)
Rignot, E, Echelmeyer, K and Krabill, W (2001) Penetration depth of interferometric synthetic-aperture radar signals in snow and ice. Geophys. Res. Lett., 28(18), 35013504 (doi: 10.1029/2000GL012484)
Scherler, D, Bookhagen, B and Strecker, M. (2011) Spatially variable response of Himalayan glaciers to climate change affected by debris cover. Nature Geosci., 4(3), 156159 (doi: 10.1038/ngeo1068)
Schiefer, E, Menounos, B and Wheate, R (2007) Recent volume loss of British Columbian glaciers, Canada. Geophys. Res. Lett., 34(16), L16503 (doi: 10.1029/2007GL030780)
Seehaus, T, Marinsek, S, Helm, V, Skvarca, P and Braun, M (2015) Changes in ice dynamics, elevation and mass discharge of Dinsmoor–Bombardier–Edgeworth glacier system, Antarctic Peninsula. Earth Planet. Sci. Lett., 427, 125135 (doi: 10.1016/j.epsl.2015.06.047)
Shuman, CA, Berthier, E and Scambos, TA (2011) 2001–2009 elevation and mass losses in the Larsen A and B embayments, Antarctic Peninsula. J. Glaciol., 57(204), 737754 (doi: 10.3189/002214311797409811)
Ulaby, FT, Moore, RK and Fung, AK (1986) Microwave remote sensing, active and passive. Vol. III: From theory to applications. Artech House, Norwood, MA
Werner, C, Wegmüller, U, Strozzi, T and Wiesmann, A (2000) Gamma SAR and interferometric processing software. Proceedings of the ERS–ENVISAT Symposium, Gothenburg, Sweden, 16–20 October 2000. European Space Agency, Noordwijk
Yao T and 9 others (2012) Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings. Nature Climate Change, 2(9), 663667 (doi: 10.1038/nclimate1580)
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Annals of Glaciology
  • ISSN: 0260-3055
  • EISSN: 1727-5644
  • URL: /core/journals/annals-of-glaciology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed