Skip to main content Accessibility help
×
Home

Helicopter-borne observations with portable microwave radiometer in the Southern Ocean and the Sea of Okhotsk

  • Takeshi Tamura (a1) (a2) (a3), Kay I. Ohshima (a4), Jan L. Lieser (a3), Takenobu Toyota (a4), Kazutaka Tateyama (a5), Daiki Nomura (a4), Kazuki Nakata (a6), Alexander D. Fraser (a3) (a4), Peter W. Jansen (a3), Kym B. Newbery (a7), Robert A. Massom (a3) (a7) and Shuki Ushio (a1) (a2)...

Abstract

Accurately measuring and monitoring the thickness distribution of thin ice is crucial for accurate estimation of ocean–atmosphere heat fluxes and rates of ice production and salt flux in ice-affected oceans. Here we present results from helicopter-borne brightness temperature (TB) measurements in the Southern Ocean in October 2012 and in the Sea of Okhotsk in February 2009 carried out with a portable passive microwave (PMW) radiometer operating at a frequency of 36 GHz. The goal of these measurements is to aid evaluation of a satellite thin-ice thickness algorithm which uses data from the spaceborne Advanced Microwave Scanning Radiometer–Earth Observing System AMSR-E) or the Advanced Microwave Scanning Radiometer-II (AMSR-II). AMSR-E and AMSR-II TB agree with the spatially collocated mean TB from the helicopter-borne measurements within the radiometers’ precision. In the Sea of Okhotsk in February 2009, the AMSR-E 36GHz TB values are closer to the mean than the modal TB values measured by the helicopter-borne radiometer. In an Antarctic coastal polynya in October 2012, the polarization ratio of 36GHz vertical and horizontal TB is estimated to be 0.137 on average. Our measurements of the TB at 36 GHz over an iceberg tongue suggest a way to discriminate it from sea ice by its unique PMW signature.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Helicopter-borne observations with portable microwave radiometer in the Southern Ocean and the Sea of Okhotsk
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Helicopter-borne observations with portable microwave radiometer in the Southern Ocean and the Sea of Okhotsk
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Helicopter-borne observations with portable microwave radiometer in the Southern Ocean and the Sea of Okhotsk
      Available formats
      ×

Copyright

References

Hide All
Cougnon, E, Galton-Fenzi BK Meijers, A and Legrésy B (2013) Modelling circulation and dense shelf water export over the Adelie and Mertz depressions, East Antarctica. J. Geophys. Res., 118, 5858–5872 (doi: 10.1002/2013JC008790)
Cox, GFN and Weeks, WF (1974) Salinity variations in sea ice. J. Glaciol., 13(67), 109120
Dee, DP and 35 others (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc., 137(656), 553597
Drucker, R, Martin, S and Moritz, R (2003) Observations of ice thickness and frazil ice in the St. Lawrence Island polynya from satellite imagery, upward-looking sonar, and salinity/temperature moorings. J. Geophys. Res., 108(C5), (3149) (doi: 10.1029/ 2001JC001213)
Drucker, R, Martin, S and Kwok, R (2011) Sea ice production and export from coastal polynyas in the Weddell and Ross Seas. Geophys. Res. Lett., 38(17), (L17502 (doi: 10.1029/ 2011GL048668)
Fraser, AD Massom RA and Michael KJ) (2010)Generation of high-resolution East Antarctic landfast sea-ice maps from cloud-free MODIS satellite composite imagery. Remote Sens. Environ., 114, 2888–2896 (doi: 10.1016/j.rse.2010.07.006)Gordon AL and Comiso JC (1988) Polynyas in the Southern Ocean. Sci. Am.. 258, 9097.
Hwang, BJ, Ehn, JK Barber, DG Galley, R and Grenfell, TC (2007) Investigations of newly formed sea ice in the Cape Bathurst polynya: 2. Microwave emission. J. Geophys. Res., 112(C5), C05003 (doi: 10.1029/2006JC003703)
Hwang, BJ, Ehn, JK and Barber, DG (2008)Impact of ice temperature on microwave emissivity of thin newly formed sea ice. J. Geophys. Res., 113(C2), C02021 (doi: 10.1029/ 2006JC003930)
Iwamoto, K, Ohshima, KI Tamura, T and Nihashi, S (2013) Estimation of thin ice thickness from AMSR-E data in the Chukchi Sea. Int. J. Remote Sens., 34(2), 468489 (doi: 10.1080/01431161. 2012.712229)
Iwamoto, K., Ohshima, KI and Tamura, T (2014) Improved mapping of sea ice production in the Arctic Ocean using AMSR-E thin ice thickness algorithm. J. Geophys. Res., 119(6), 35743594 (doi: 10.1002/2013JC009749)
Key, J, Collins, J, Fowler, C and Stone, R (1997) High-latitude surface temperature estimates from thermal satellite data. Remote Sens. Environ.. 61, 302309
Kovacs, A (1996) Sea ice. Part I. Bulk salinity versus ice floe thickness. CRREL Rep. 97-7
Martin, S, Drucker, R, Kwok, R and Holt, B (2004) Estimation of the thin ice thickness and heat flux for the Chukchi Sea Alaskan coast polynya from Special Sensor Microwave/Imager data, 1990–2001. J. Geophys. Res., 109(C10), (C10012) (doi: 10.1029/ 2004JC002428)
Martin, S, Drucker, R, Kwok, R and Holt B. (2005) Improvements in the estimates of ice thickness and production in the Chukchi Sea polynyas derived from AMSR-E. Geophys. Res. Lett., 32(5), (L05505) (doi: 10.1029/2004GL022013)
Maykut, GA (1978), Energy exchange over young sea ice in the central Arctic. J. Geophys. Res., 83(C7), 3646–3658
Morales Maqueda, MA Willmott, AJ and Biggs, NRT (2004) Polynya dynamics: a review of observations and modeling. Rev. Geophys., 42, RG1004 (doi: 10.1029/2002RG000116)
Nihashi, S, Ohshima, KI Tamura, T, Fukamachi, Y and Saitoh, S (2009) Thickness and production of sea ice in the Okhotsk Sea coastal polynyas from AMSR-E. J. Geophys. Res., 114(C10), (C10025) (doi: 10.1029/2008JC005222)
Pease, CH (1987) The size of wind-driven coastal polynyas. J. Geophys. Res.. 92, 70497059
Scambos, TA Haran, TM and Massom, R (2006) Validation of AVHRR and MODIS ice surface temperature products using in situ radiometers. Ann. Glaciol.. 44, 345351
Smith, SD Muench, RD and Pease, CH (1990) Polynyas and leads: an overview of physical processes and environment. J. Geophys. Res., 95(6), 94619479
Tamura, T and Ohshima, KI (2011)Mapping of sea ice production in the Arctic coastal polynyas. J. Geophys. Res., 116(C7), C07030 (doi: 10.1029/2010JC006586)
Tamura, T and 6 others (2006) Estimation of thin sea-ice thickness from NOAA AVHRR data in a polynya of the Wilkes Land coast, East Antarctica. Ann. Glaciol.. 44, 269274
Tamura, T, Ohshima, KI Markus, T, Cavalieri, DJ Nihashi, S and Hirasawa, N (2007) Estimation of thin ice thickness and detection of fast ice from SSM/I data in the Antarctic Ocean. J. Atmos. Ocean. Technol.. 24, 17571772
Tamura, T, Ohshima, KI and Nihashi, S (2008) Mapping of sea ice production for Antarctic coastal polynyas. Geophys. Res. Lett., 35(7), (L07606) (doi: 10.1029/2007GL032903)
Tamura, T, Ohshima, KI Nihashi, S and Hasumi, H (2011) Estimation of surface heat/salt fluxes associated with sea ice growth/melt in the Southern Ocean. Sci. Online Lett. Atmos., 7, 1720 (doi: 10.2151/sola.2011-005)
Tamura, T and Ohshima, KI (2011)Mapping of sea ice production in the Arctic coastal polynyas. J. Geophys. Res., 116(C7), C07030 (doi: 10.1029/2010JC006586)
Toyota, T, Ukita, J, Ohshima, KI Wakatsuchi, M and Muramoto, K (1999) A measurement of sea ice albedo over the southwestern Okhotsk Sea. J. Meteorol. Soc. Jpn, 77(1), 117133
Toyota, T, Kawamura, T, Ohshima, KI Shimoda, H and Wakatsuchi, M (2004) Thickness distribution, texture and stratigraphy, and a simple probabilistic model for dynamical thickening of sea ice in the southern Sea of Okhotsk. J. Geophys. Res., 109(C6), (C06001) (doi: 10.1029/2003JC002090)
Toyota, T, Takatsuji, S, Tateyama, K, Naoki, K and Ohshima KI (2007) Properties of sea ice and overlying snow in the southern Sea of Okhostk. J. Oceanogr.. 63, 393411
Ulaby FT Moore RK and Fung AK (1982)Radar remote sensing and surface scattering and emission theory. In Microwave remote sensing: active and passive. Vol. 2. Addison-Wesley Publishing Co., Reading, MA, 4571064
Vant, MR Ramseier, RO and Makios, V (1978) The complex dielectric constant of sea ice at frequencies in the range of 0.1–40 GHz. J. Appl. Phys.. 49, 12641280
Yu, Y and Rothrock, DA (1996) Thin ice thickness from satellite thermal imagery. J. Geophys. Res.. 101, 2575325766

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed