Skip to main content
×
×
Home

Instruments and methods: a case study of ice core bubbles as strain indicators

  • John M. Fegyveresi (a1) (a2), Richard B. Alley (a2), Donald E. Voigt (a2), Joan J. Fitzpatrick (a3) and Lawrence A. Wilen (a4)...
Abstract

Measurements of a sample from ~580 m depth in the WAIS Divide (WDC06A) ice core reveal that bubbles are preferentially elongated in the basal plane of their parent grain, as expected if bubble shape preserves the record of dominant basal glide. This suggests that a method using bubbles as strain gauges could provide insights to grain-scale ice deformation. We introduce a technique using fabric and image analyses of paired thin and thick sections. Comparison of the crystallographic orientations of 148 grains and the shape orientations of 2377 intragrain bubbles reveals a strongly preferred elongation of bubbles in the grain basal planes (R2 = 0.96). Elongation magnitudes are consistent with a balance between ice flow deformation and diffusive restoration, with larger bubbles more elongated. Assuming bubbles record ice strain, grains with greater resolved stress on their basal planes from the far-field ice flow stresses show greater deformation, but with large variability suggesting that heterogeneity of the local stress field causes deformation even in unfavorably oriented grains. A correlation is also observed among bubble elongation, grain size, and bubble size, explaining a small but significant fraction of the variance ( P< 0.5), with implications for controls on ice deformation, as discussed here.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Instruments and methods: a case study of ice core bubbles as strain indicators
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Instruments and methods: a case study of ice core bubbles as strain indicators
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Instruments and methods: a case study of ice core bubbles as strain indicators
      Available formats
      ×
Copyright
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
References
Hide All
Alley, RB (1987) Firn densification by grain-boundary sliding: a first model. J. Phys. Colloques, 48(C1), 249256 (doi: 10.1051/jphyscol:1987135)
Alley, RB (1988) Fabrics in polar ice sheets: development and prediction. Science, 240(4851), 493495 (doi: 10.1126/science.240.4851.493)
Alley, RB (1992) Flow-law hypotheses for ice-sheet modeling. J. Glaciol., 38(129), 245256 (doi: 10.1017/S0022143000003658)
Alley, RB and Bentley, CR (1988) Ice-core analysis on the Siple Coast of West Antarctica. Ann. Glaciol., 11, 17 (doi: 10.1017/S0260305500006236)
Alley, RB and Fitzpatrick, JJ (1999) Conditions for bubble elongation in cold ice-sheet ice. J. Glaciol., 45(149), 147153 (doi: 10.1017/S0022143000003129)
Alley, RB, Perepezko, JH and Bentley, CR (1986a) Grain growth in polar ice: I. Theory. J. Glaciol., 32(112), 415424 (doi: 10.3189/S0022143000012120)
Alley, RB, Perepezko, JH and Bentley, CR (1986b) Grain growth in polar ice: II. Application. J. Glaciol., 32(112), 425433 (doi: 10.3189/S0022143000012132)
Alley, RB, Gow, AJ and Meese, DA (1995) Mapping c-axis fabrics to study physical processes in ice. J. Glaciol., 41(137), 197203 (doi: 10.3189/S0022143000017895)
Azuma, N and Higashi, A (1985) Formation processes of ice fabric pattern in ice sheets. Ann. Glaciol., 6, 130134 (doi: 10.1017/S0260305500010168)
Baker, I, Liu, F, Jia, K, Hu, X and Dudley, M (1996) Dislocation/Grain Boundary Interactions in Ice Crystals under Creep Conditions. In Mater. Sci. Forum, 207, 581584. Trans Tech Publications (doi: 10.4028/www.scientific.net/MSF.207-209.581)
Baker, I and 5 others (2000) Dynamic observations of dislocation/grain-boundary interactions in ice. Ann. Glaciol., 31, 236240 (doi: 10.3189/172756400781820525)
Bouchez, JL and Duval, P (1982) The fabric of polycrystalline ice deformed in simple shear: experiments in torsion, natural deformation and geometrical interpretation. Texture, Stress Microstruct., 5(3), 171190 (doi: 10.1155/TSM.5.171)
Budd, WF and Jacka, TH (1989) A review of ice rheology for ice sheet modelling. Cold Reg. Sci. Technol., 16(2), 107144 (doi: 10.1016/0165-232X(89)90014-1)
Buizert, C and 16 others (2015) The WAIS divide deep ice core WD2014 chronology – part 1: methane synchronization (68–31 ka BP) and the gas age–ice age difference. Clim. Past, 11, 153173 (doi: 10.5194/cp-11-153-2015)
Casey, KA and 5 others (2014) The 1500 m South Pole ice core: recovering a 40 ka environmental record. Ann. Glaciol., 55(68), 137146 (doi: 10.3189/2014AoG68A016)
Conway, H and 9 others (2005) Proposed drill site near the Ross-Amundsen ice divide, West Antarctica. White Paper for the US Ice Core Working Group.
Conway, H and Rasmussen, LA (2009) Recent thinning and migration of the Western Divide, central West Antarctica. Geophys. Res. Lett., 36, L12502 (doi: 10.1029/2009GL038072)
Cuffey, KM and Paterson, WSB (2010) The physics of glaciers, 4th edn. Butterworth-Heinemann, Oxford
Cuffey, KM, Thorsteinsson, T and Waddington, ED (2000) A renewed argument for crystal size control of ice sheet strain rates. J. Geophys. Res., Solid Earth, 105(B12), 2788927894 (doi: 10.1029/2000JB900270)
Cuffey, KM and 8 others (2016) Deglacial temperature history of West Antarctica. Proc. Natl. Acad. Sci. USA, 113(50), 1424914254 (doi: 10.1073/pnas.1609132113)
Duval, P and Montagnat, M (2002) Comment on ‘superplastic deformation of ice: experimental observations’ by D.L. Goldsby and D.L. Kohlstedt. J. Geophys. Res.: Solid Earth, 107(B4), 14 (doi: 10.1029/2001JB000946)
Duval, P, Ashby, M and Anderman, I (1983) Rate controlling processes in the creep of polycrystalline ice. J. Phys. Chem., 87(21), 40664074 (doi: 10.1021/j100244a014)
Faria, SH, Weikusat, I and Azuma, N (2014b) The microstructure of polar ice. Part II: state of the art. J. Struct. Geol., 61, 2149 (doi 10.1016/j.jsg.2013.11.003)
Fegyveresi, JM (2015) Physical properties of the West Antarctic Ice Sheet (WAIS) Divide deep core: development, evolution, and interpretation. (PhD thesis, The Pennsylvania State Univ., State College, PA, USA)
Fegyveresi, JM (2018) WAIS Divide 580 m bubble and grain hybrid data. U.S. Antarctic Program (USAP) Data Center. Dataset (doi: 10.15784/601087)
Fegyveresi, JM and 7 others (2011) Late-Holocene climate evolution at the WAIS divide site, west Antarctica: bubble number-density estimates. J. Glaciol., 57(204), 629638 (doi: 10.3189/002214311797409677)
Fegyveresi, JM and 7 others (2016) Five millennia of surface temperatures and ice core bubble characteristics from the WAIS Divide deep core, West Antarctica. Paleoceanography, 31(3), 416433 (doi: 10.1002/2015PA002851)
Fitzpatrick, JJ (1994) Preliminary report on the physical and stratigraphic properties of the Taylor Dome ice core. Antarc. J. U.S.A., 29, 8485
Fitzpatrick, JJ and 10 others (2014) Physical properties of the WAIS Divide ice core. J. Glaciol., 60(224), 11811198 (doi: 10.3189/2014JoG14J100)
Fudge, TJ and 8 others (2016) Variable relationship between accumulation and temperature in West Antarctica for the past 31,000 years. Geophys. Res. Lett., 43(8), 37953803 (doi: 10.1002/2016GL068356)
Gay, NC (1968) Pure shear and simple shear deformation of inhomogeneous viscous fluids. 1. Theory. Tectonophysics, 5(3), 211234 (doi: 10.1016/0040-1951(68)90065-6)
Goldsby, DL and Kohlstedt, DL (2001) Superplastic deformation of ice: experimental observations. J. Geophys. Res., Solid Earth, 106(B6), 1101711030 (doi: 10.1029/2000JB900336)
Gow, AJ (1968a) Bubbles and bubble pressures in Antarctic glacier ice. J. Glaciol., 7(50), 167182 (doi: 10.3189/S0022143000030975)
Gow, AJ (1968b) Deep core studies of the accumulation and densification of snow at byrd station and little America V, Antarctica. USACE Cold Regions Research and Engineering Laboratory Res., Rep 197, Hanover, NH
Hansen, DP and Wilen, LA (2002) Performance and applications of an automated c-axis ice-fabric analyzer. J. Glaciol., 48(160), 159170 (doi: 10.3189/172756502781831566)
Hirth, JP (1972) The influence of grain boundaries on mechanical properties. Metall. Trans., 3(12), 30473067 (doi: 10.1007/BF02661312)
Hudleston, PJ (1977) Progressive deformation and development of fabric across zones of shear in glacial ice. In Saxena S and Bhattacharji S eds. Energetics of geological processes. Springer-Verlag, New York, 121150 (doi: 10.1007/978-3-642-86574-9_7)
Jacka, TH and Maccagnan, M (1984) Ice crystallographic and strain rate changes with strain in compression and extension. Cold Reg. Sci. Technol., 8(3), 269286 (doi: 10.1016/0165-232X(84)90058-2)
Kipfstuhl, S, Pauer, F, Kuhs, WF and Shoji, H (2001) Air bubbles and clathrate hydrates in the transition zone of the NGRIP deep ice core. Geophys. Res. Lett., 28(4), 591594 (doi: 10.1029/1999GL006094)
Kipfstuhl, S and 6 others (2006) Microstructure mapping: a new method for imaging deformation-induced microstructural features of ice on the grain scale. J. Glaciol., 52(178), 398406 (doi: 10.3189/172756506781828647)
Kipfstuhl, S and 8 others (2009) Evidence of dynamic recrystallization in polar firn. J. Geophys. Res., Solid Earth, 114(B05204), 110 (doi: 10.1029/2008JB005583)
Llorens, M-G and 5 others (2016a) Dynamic recrystallisation of ice aggregates during co-axial viscoplastic deformation: a numerical approach. J. Glaciol., 62(232), 359377 (doi: 10.1017/jog.2016.28)
Llorens, M-G and 6 others (2016b) Full-field predictions of ice dynamic recrystallisation under simple shear conditions. Earth Planet. Sci. Lett., 450, 233242 (doi: 10.1016/j.epsl.2016.06.045)
Montagnat, M and 11 others (2014) Multiscale modeling of ice deformation behavior. J. Struct. Geol., 61, 78108 (doi: 10.1016/j.jsg.2013.05.002)
Nakawo, M and Wakahama, G (1981) Preliminary experiments on the formation of elongated air bubbles in glacier ice by stress. J. Glaciol., 27(95), 141146 (doi: 10.3189/S0022143000011291)
Pauer, F, Kipfstuhl, S, Kuhs, WF and Shoji, H (2000) Classification of air clathrates found in polar ice sheets. Polarforschung, 66(3), 3138
Qi, C, Goldsby, DL and Prior, JP (2017) The down-stress transition from cluster to cone fabrics in experimentally deformed ice. Earth Planet. Sci. Lett., 471, 136147 (doi: 10.1016/j.epsl.2017.05.008)
Readings, CJ and Bartlett, JT (1971) Interference phenomena in deformed single crystals of ice. J. Glaciol., 10(59), 269286 (doi: 10.3189/S002214300001323X)
Reuss, A (1929) Berechnung der fliessgrenze von mischkristallen auf grund der plastizitätsbedingung für Einkristalle. Z. Angew. Math. Mech., 9, 4958
Russ, JC (2010) The image processing and analysis cookbook, 5th edn., Reindeer Graphics Inc., Asheville, N.C
Russell-Head, DS and Budd, WF (1979) Ice-sheet flow properties derived from bore-hole shear measurements combined with ice-core studies. J. Glaciol., 24(90), 117130 (doi: 10.3189/S0022143000014684)
Sigl, M and 26 others (2016) The WAIS Divide deep ice core WD2014 chronology-part 2: annual-layer counting (0–31-ka-BP). Clim. Past, 12(3), 769786 (doi: 10.5194/cp-12-769-2016)
Steinbach, F and 6 others (2016) Strain localization and dynamic recrystallization in the ice–air aggregate: a numerical study. Cryosphere, 10, 30713089 (doi: 10.5194/tc-10-3071-2016)
Souney, JM and 10 others (2014) Core handling and processing for the WAIS divide ice-core project. Ann. Glaciol., 55(68), 1526 (doi: 10.3189/2014AoG68A008)
Trickett, YL, Baker, I and Pradhan, PMS (2000) The orientation dependence of the strength of ice single crystals. J. Glaciol., 46(152), 4144 (doi: 10.3189/172756500781833296)
Van der Veen, CJ and Whillans, IM (1994) Development of fabric in ice. Cold Reg. Sci. Technol., 22(2), 171195 (doi: 10.1016/0165-232X(94)90027-2)
Voigt, W (1928) Lehrbuch der Kristallphysik. Teubner, Leibzig
Voigt, DE, Alley, RB, Anandakrishnan, S and Spencer, MK (2003) Ice-core insights into the flow and shut-down of Ice Stream C, West Antarctica. Ann. Glaciol., 37, 123128 (doi: 10.3189/172756403781815465)
WAIS Divide Project Members (2013) Onset of deglacial warming in West Antarctica driven by local orbital forcing. Nature, 500(7463), 440444 (doi: 10.1038/nature12376)
Weertman, J (1983) Creep deformation of ice. Ann. Rev. Earth Planet. Sci., 11(1), 215240 (doi: 10.1146/annurev.ea.11.050183.001243)
Weikusat, I, Kipfstuhl, S, Faria, SH, Azuma, N and Miyamoto, A (2009) Subgrain boundaries and related microstructural features in EDML (Antarctica) deep ice core. J. Glaciol., 55(191), 461472 (doi: 10.3189/002214309788816614)
Wilen, LA (2000) A new technique for ice-fabric analysis. J. Glaciol., 46(152), 129139 (doi: 10.3189/172756500781833205)
Wilson, CJ, Peternell, M, Piazolo, S and Luzin, V (2014) Microstructure and fabric development in ice: lessons learned from in situ experiments and implications for understanding rock evolution. J. Struct. Geol., 61, 5077 (doi: 10.1016/j.jsg.2013.05.006)
Zhang, Y, Hobbs, BE and Jessell, MW (1994a) The effect of grain boundary sliding on fabric development in polycrystalline aggregates. J. Struct. Geol., 16, 13151325 (doi: 10.1016/0191-8141(94)90072-8)
Zhang, Y, Hobbs, BE and Ord, A (1994b) A numerical simulation of fabric development in polycrystalline aggregates with one slip system. J. Struct. Geol., 16, 12971313 (doi: 10.1016/0191-8141(94)90071-X)
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Annals of Glaciology
  • ISSN: 0260-3055
  • EISSN: 1727-5644
  • URL: /core/journals/annals-of-glaciology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Type Description Title
WORD
Supplementary materials

Fegyveresi et al. supplementary material
Fegyveresi et al. supplementary material 1

 Word (4.5 MB)
4.5 MB

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed