Skip to main content

Linking winter and spring thermodynamic sea-ice states at critical scales using an object-based image analysis of Sentinel-1

  • RK Scharien (a1), R Segal (a1), JJ Yackel (a2), SEL Howell (a3) and S Nasonova (a1)...

Changing Arctic sea-ice extent and melt season duration, and increasing economic interest in the Arctic have prompted the need for enhanced marine ecosystem studies and improvements to dynamical and forecast models. Sea-ice melt pond fraction fp has been shown to be correlated with the September minimum ice extent due to its impact on ice albedo and heat uptake. Ice forecasts should benefit from knowledge of fp as melt ponds form several months in advance of ice retreat. This study goes further back by examining the potential to predict fp during winter using backscatter data from the commonly available Sentinel-1 synthetic aperture radar. An object-based image analysis links the winter and spring thermodynamic states of first-year and multiyear sea-ice types. Strong correlations between winter backscatter and spring fp, detected from high-resolution visible to near infrared imagery, are observed, and models for the retrieval of fp from Sentinel-1 data are provided (r2 ≥ 0.72). The models utilize HH polarization channel backscatter that is routinely acquired over the Arctic from the two-satellite Sentinel-1 constellation mission, as well as other past, current and future SAR missions operating in the same C-band frequency. Predicted fp is generally representative of major ice types first-year ice and multiyear ice during the stage in seasonal melt pond evolution where fp is closely related to spatial variations in ice topography.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Linking winter and spring thermodynamic sea-ice states at critical scales using an object-based image analysis of Sentinel-1
      Available formats
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Linking winter and spring thermodynamic sea-ice states at critical scales using an object-based image analysis of Sentinel-1
      Available formats
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Linking winter and spring thermodynamic sea-ice states at critical scales using an object-based image analysis of Sentinel-1
      Available formats
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (, which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Hide All
Arrigo, KR and 30 others (2012) Massive phytoplankton blooms under Arctic sea ice. Science, 336, 1408
Benz, UC, Hofmann, P, Willhauck, G, Lingenfelder, I and Heynen, M (2004) Multi-resolution, object-oriented fuzzy analysis of remote sensing data for GIS-ready information. ISPRS J. Photogramm. Remote Sens., 58(3–4), 239258
Clausi, DA (2002) An analysis of co-occurrence texture statistics as a function of grey level quantization, Can. J. Remote Sens., 28(1), 4562
Clausi, DA and Deng, H (2003) Operational segmentation and classification of SAR sea ice imagery. In Proc. IEEE workshop on advances in techniques for analysis of remotely sensed data. IEEE, Washington, DC, 268275 (doi: 10.1109/WARSD.2003.1295204)
Ehn, JK and 5 others (2011) Impact of horizontal spreading on light propagation in melt pond covered seasonal sea ice in the Canadian Arctic. J. Geophys. Res., 116, C00G02 (doi: 10.1029/2010JC006908)
Eicken, H, Krouse, HR, Kadko, D and Perovich, DK (2002) Tracer studies of pathways and rates of meltwater transport through Arctic summer sea ice. J. Geophys. Res., 107(C10), 8046 (doi: 10.1029/2000JC000583)
Eicken, H, Grenfell, TC, Perovich, DK, Richter-Menge, JA and Frey, K (2004) Hydraulic controls on summer Arctic pack ice albedo. J. Geophys. Res., 109, C08007 (doi: 10.1029/2003JC001989)
ESA (2006) Envisat SAR Monthly Report July 2006 – Technical Note, Issue 5, ENVI-CLVL-EOPG-TN-04-0009, 1–51
ESA (2013) Sentinel-1 User Handbook, Issue 1, GMES-S1OP-EOPG-TN-13-0001, 1–80 (
Fotheringham, AS and Wong, DWS (1991) The modifiable areal unit problem in multivariate statistical analysis. Environ. Plan., A23, 10251044
Geldsetzer, T, Mead, JB, Yackel, JJ, Scharien, RK and Howell, SEL (2007) Surface-based polarimetric C-band scatterometer for field measurements of sea ice. IEEE Trans. Geosci. Remote Sens., 45(11), 34053416
Giles, KA, Laxon, SW and Ridout, AL (2008) Circumpolar thinning of Arctic sea ice following the 2007 record ice extent minimum. Geophys. Res. Lett., 35, L22502 (doi: 10.1029/2008GL035710)
Golden, KM, Ackley, SF and Lytle, VI (1998) The percolation phase transition in sea ice. Science, 282, 22382241 (doi: 10.1126/science.282.5397.2238)
Grenfell, TC and Perovich, DK (2004) Seasonal and spatial evolution of albedo in a snow-ice-land-ocean environment. J. Geophys. Res., 109, C01001 (doi: 10.1029/2003JC001866)
Hallikainen, MT and Winebrenner, DP (1992) The physical basis for sea ice remote sensing. In Carsey, F ed. Microwave remote sensing of Sea Ice. American Geophysical Union, Washington, DC, Geophysical Monograph 68, pp 2946
Hanesiak, JM, Yackel, JJ and Barber, DG (2001) Effect of melt ponds on first-year sea ice ablation-integration of RADARSAT-1 and thermodynamic modelling. Can. J. Remote Sens., 27(5), 433442
Haralick, RM, Shanmugan, K and Dinstein, I (1973) Textural features for image classification. IEEE Trans. Syst. Man Cybern., 3(6), 610621
Inoue, J, Kikuchi, T and Perovich, DK (2008) Effect of heat transmission through melt ponds and ice on melting during summer in the Arctic ocean. J. Geophys. Res., 113, C05020 (doi: 10.1029/2007JC004182)
Istomina, L and 11 others (2015) Melt pond fraction and spectral sea ice albedo retrieval from MERIS data – part 1: validation against in situ, aerial, and ship cruise data. Cryosphere, 9, 15511566 (doi: 10.5194/tc-9-1551-2015)
Kinnard, C and 5 others (2011) Reconstructed changes in Arctic sea ice over the past 1,450 years. Nature, 24, 509512 (doi: 10.1038/nature10581)
Kwok, R and Rothrock, DA (2009) Decline in Arctic sea ice thickness from submarine and ICESat records: 1958–2008. Geophys. Res. Lett., 36, L15501 (doi: 10.1029/2009GL039035)
Kwok, R and 5 others (2009) Thinning and volume loss of the Arctic ocean sea ice cover: 2003–2008. J. Geophys. Res., 114, C07005 (doi: 10.1029/2009JC005312)
Landy, J, Ehn, J, Shields, M and Barber, D (2014) Surface and melt pond evolution on landfast first-year sea ice in the Canadian Arctic archipelago. J. Geophys. Res. Oceans, 119, 30543075 (doi: 10.1002/2013JC009617)
Laxon, S, Peacock, N and Smith, D (2003) High interannual variability of sea ice thickness in the Arctic region. Nature, 425, 947950 (doi: 10.1038/nature02050)
Laxon, SW and 14 others (2013). CryoSat-2 estimates of Arctic sea ice thickness and volume. Geophys. Res. Lett., 40, 732737 (doi: 10.1002/grl.50193)
Marceau, DJ (1999) The scale issue in the social and natural sciences, Can. J. Remote Sens., 25(4), 347356
Markus, T, Cavalieri, DJ, Tschudi, MA and Ivanoff, A (2003) Comparison of aerial video and Landsat 7 data over ponded sea ice. Remote Sens. Environ., 86, 458469
Markus, T, Stroeve, JC and Miller, J (2009) Recent changes in Arctic sea ice melt onset, freezeup, and melt season length. J. Geophys. Res., 114, C12024 (doi: 10.1029/2009JC005436)
Maykut, GA (1985) The ice environment. In Horner, RA ed. Sea ice biota. CRC Press, Boca Raton, pp 2182
Meier, WN and 11 others (2014) Arctic sea ice in transformation: a review of recent observed changes and impacts on biology and human activity. Rev. Geophys., 52, 185217 (doi: 10.1002/2013RG000431)
Mundy, CJ and 13 others (2009) Contribution of under-ice primary production to an ice-edge upwelling phytoplankton bloom in the Canadian Beaufort Sea. Geophys. Res. Lett., 36, L17601 (doi: 10.1029/2009GL038837)
Perovich, DK, Tucker, WB III and Ligett, KA (2002) Aerial observations of the evolution of ice surface conditions during summer. J. Geophys. Res., 107(C10), 8048 (doi: 10.1029/2000JC000449)
Perovich, DK and 5 others (2003) Thin and thinner: sea ice mass balance measurements during SHEBA. J. Geophys. Res., 108, 8050 (doi: 10.1029/2001JC001079)
Perovich, DK and 5 others (2007) Increasing solar heating of the Arctic ocean and adjacent seas, 1979–2005: attribution and role in the ice-albedo feedback. Geophys. Res. Lett., 34, L19505 (doi: 10.1029/2007GL031480, 2007)
Pistone, K, Eisenman, I and Ramanathan, V (2014) Observational determination of albedo decrease caused by vanishing Arctic sea ice. Proc. Natl. Acad. Sci. USA, 111(9), 33223326 (doi: 10.1073/pnas.1318201111)
Polashenski, C, Perovich, D and Courville, Z (2012). The mechanisms of sea ice melt pond formation and evolution. J. Geophys. Res., 117, C01001 (doi: 10.1029/2011JC007231)
Polyak, L and 17 others (2010) History of sea ice in the Arctic. Quat. Sci. Rev., 29(15–16), 17571778 (doi: 10.1016/j.quascirev.2010.02.010)
Pucko, M and 5 others (2012) Mechanisms and implications of α-HCH enrichment in melt pond water on Arctic sea ice. Environ. Sci. Technol., 46(21), 1186211869 (doi: 10.1021/es303039f)
Rösel, A, Kaleschke, L and Birnbaum, G (2012) Melt ponds on Arctic sea ice determined from MODIS satellite data using an artificial neural network. Cryosphere, 6, 431446 (
Scharien, RK, Hochheim, K, Landy, J and Barber, DG (2014) First-year sea ice melt pond fraction estimation from dual-polarisation C-band SAR – part 2: scaling in situ to radarsat-2. Cryosphere, 8, 21632176 (doi: 10.5194/tc-8-2163-2014)
Schröder, D, Feltham, DL, Flocco, D and Tsamados, M (2014) September Arctic sea-ice minimum predicted by spring melt-pond fraction. Nat. Clim. Change, 4, 353357 (doi: 10.1038/nclimate2203)
Tschudi, MA, Maslanik, JA and Perovich, DK (2008) Derivation of melt pond coverage on Arctic sea ice using MODIS observations. Remote Sens. Environ., 112, 26052614 (doi: 10.1016/j.rse.2007.12.009)
Turner, MG, Gardner, RH and O'Neill, RV (2001) Landscape ecology in theory and practice: pattern and process. Springer, New York
Vancoppenolle, M and 11 others (2013) Role of sea ice in global biogeochemical cycles: emerging views and challenges. Quat. Sci. Rev., 79, 207230 (
Weeks, WF (1981) Sea ice: the potential of remote sensing. Oceanus, 24, 3948
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Annals of Glaciology
  • ISSN: 0260-3055
  • EISSN: 1727-5644
  • URL: /core/journals/annals-of-glaciology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed