Skip to main content
×
×
Home

The microstructure and biogeochemistry of Arctic cryoconite granules

  • Harry Langford (a1) (a2), Andy Hodson (a1), Steve Banwart (a2) and Carl Bøggild (a3)
Abstract

A cryoconite granule is a biologically active aggregation of microorganisms, mineral particles and organic matter found on glacier surfaces, often within shallow pools or cryoconite holes. Observations of the microstructure of a range of cryoconite granules from locations in Svalbard and Greenland reveal their structure and composition. Whereas bulk analyses show that the mineralogy and geochemistry of these granules are broadly similar, analyses of their microstructure, using optical, epifluorescence and confocal microscopy, indicate differences in the location and quantity of photosynthetic microorganisms, heterotrophic bacteria and organic matter. Using these findings, a hypothesis on the aggregation of cryoconite is presented, centred upon multilevel aggregation by bioflocculation and filamentous binding.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      The microstructure and biogeochemistry of Arctic cryoconite granules
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      The microstructure and biogeochemistry of Arctic cryoconite granules
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      The microstructure and biogeochemistry of Arctic cryoconite granules
      Available formats
      ×
Copyright
References
Hide All
Adav, S.S. and 6 others. 2010. Stereological assessment of extracellular polymeric substances, exo-enzymes, and specific bacterial strains in bioaggregates using fluorescence experiments. Biotech. Adv., 28(2), 255280.
Barranguet, C. and 6 others. 2004. Studying undisturbed autotrophic biofilms: still a technical challenge. Aquat. Microbial Ecol., 34(1), 19.
Carson, J.K., Campbell, L., Rooney, D., Clipson, N. and Gleeson, D.B.. 2009. Minerals in soil select distinct bacterial communities in their microhabitats. FEMS Microbiol. Ecol., 67(3), 381388.
Chen, M.-Y., Lee, D.-J., Tay, J.-H. and Show, K.-Y.. 2007. Staining of extracellular polymeric substances and cells in bioaggregates. Appl. Microbiol. Biotech., 75(2), 467474.
Christner, B.C., Kvito, B.H. and Reeve, J.N.. 2003. Molecular identification of bacteria and eukarya inhabiting an Antarctic cryoconite hole. Extremophiles, 7(3), 177183.
Cullity, B.D. 1978. Elements of x-ray diffraction. Second edition. Reading, MA, Addison-Wesley.
Cuypers, C., Grotenhuis, T., Nierop, K.G.J., Franco, E.M., Jager, A. de and Rulkens, W.. 2002.Amorphous and condensed organic matter domains: the effect of persulfate oxidation on the composition of soil/sediment organic matter. Chemosphere, 48(9), 919931.
De Kreuk, M.K. and van Loosdrecht, M.C.M.. 2004. Selection of slow growing organisms as a means for improving aerobic granular sludge stability. Water Sci. Technol., 49(11–12), 917.
De los Ríos, A., Ascaso, C., Wierzchos, J., Fernández-Valiente, E. and Quesada, A.. 2004. Microstructural characterization of cyanobacterial mats from the McMurdo Ice Shelf, Antarctica. Appl. Environ. Microbiol., 70(1), 569580.
De Winder, B., Staats, N., Stal, L.J. and Paterson, D.M.. 1999. Carbohydrate secretion by phototrophic communities in tidal sediments. J. Sea Res., 42(2), 131146.
Dittrich, M. and Luttge, A.. 2008. Microorganisms, mineral surfaces, and aquatic environments: learning from the past for future progress. Geobiology, 6(3), 201213.
Folkersma, R., van Diemen, A.J.G. and Stein, H.N.. 1999. Understanding the influence of gravity on perikinetic coagulation on the basis of the DLVO theory. Adv. Colloid Interface Sci., 83(1–3), 7184.
Gale, S.J. and Hoare, P.J.. 1991. Quaternary sediments. London, Belhaven Press.
Hodson, A. and 7 others. 2008. Glacial ecosystems. Ecol. Monogr., 78(1), 4167.
Hodson, A. and 6 others. 2010. The structure, biological activity and biogeochemistry of cryoconite aggregates upon an Arctic valley glacier: Longyearbreen, Svalbard. J. Glaciol., 56(196), 349362.
Jorand, F., Boue-Bigne, F., Block, J.C. and Urbain, V.. 1998. Hydrophobic/hydrophilic properties of activated sludge exopolymeric substances. Water Sci. Tech., 37(4), 307315.
Kögel-Knabner, I. and 7 others. 2008. Organo-mineral associations in temperate soils: integrating biology, mineralogy, and organic matter chemistry. J. Plant Nutr. Soil Sci., 171(1), 6182.
Kristensen, E. 1990. Characterization of biogenic organic matter by stepwise thermogravimetry. Biogeochemistry, 9(2), 135159.
Lawrence, J.R. and 6 others. 2003. Scanning transmission X-ray, laser scanning, and transmission electron microscopy mapping of the exopolymeric matrix of microbial biofilms. Appl. Environ. Microbiol., 69(9), 55435554.
Leppard, G.G. 1995. The characterization of algal and microbial mucilages and their aggregates in aquatic ecosystems. Sci. Total Environ., 165(1–3), 103131.
Liu, H. and Fang, H.H.P.. 2002. Characterization of electrostatic binding sites of extracellular polymers by linear programming analysis of titration data. Biotech. Bioeng., 80(7), 806811.
Madejová, J. 2003. FTIR techniques in clay mineral studies. Vibr. Spectrosc., 31(1), 110.
Madejová, J., Pentrák, M., Pálková, H. and Komadel, P.. 2009. Near-infrared spectroscopy: a powerful tool in studies of acid-treated clay minerals. Vibr. Spectrosc., 49(2), 211218.
Margesin, R., Zacke, G. and Schinner, E.. 2002. Characterization of heterotrophic microorganisms in Alpine glacier cryoconite. Arct. Antarct. Alp. Res., 34(1), 8893.
Neu, T.R., Kuhlicke, U. and Lawrence, J.R.. 2002. Assessment of fluorochromes for two-proton laser scanning microscopy of biofilms. Appl. Environ. Microbiol., 68(2), 901909.
Neu, T.R., Woelfl, S. and Lawrence, J.R.. 2004. Three-dimensional differentiation of photo-autotrophic biofilm constituents by multi-channel laser scanning microscopy (single-photon and two-photon excitation). J. Microbiol. Meth., 56(2), 161172.
Neu, T.R., Manz, B., Volke, F., Dynes, J.J., Hitchcock, A.P. and Lawrence, J.R.. 2010. Advanced imaging techniques for assessment of structure, composition and function in biofilm systems. FEMS Microbiol. Ecol., 72(1), 121.
Ranjard, L. and Richaume, A.. 2001. Quantitative and qualitative microscale distribution of bacteria in soil. Res. Microbiol, 152(8), 707716.
Rippka, R., Deruelles, J., Waterbury, J.B., Herdman, M. and Stanier, R.Y.. 1979. Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J. Gen. Microbiol., 111(2), 161.
Ruffell, A. and Wiltshire, P.. 2004. Conjunctive use of quantitative and qualitative X-ray diffraction analysis of soils and rocks for forensic analysis. Forensic Sci. Int., 145(1), 1323.
Schmidt, J.E. and Ahring, B.K. 1994. Extracellular polymers in granular sludge from different upflow anaerobic sludge blanket (UASB) reactors. Appl. Microbiol. Biotechnol., 42(2–3), 457462.
Siewert, C. 2004. Rapid screening of soil properties using thermogravimetry. Soil Sci. Soc. Am. J., 68(5), 16561661.
Sigler, W.V. and Zeyer, J.. 2002. Microbial diversity and activity along the forefields of two receding glaciers. Microbial Ecol., 43(4), 397407.
Simon, M., Grossart, H.-P., Schweitzer, B. and Ploug, H.. 2002. Microbial ecology of organic aggregates in aquatic ecosystems. Aquat. Microbial Ecol., 28(2), 175211.
Six, J., Frey, S.D., Thiet, R.K. and Batten, K.M.. 2006. Bacterial and fungal contributions to carbon sequestration in agroecosystems. Soil Sci. Soc. Am. J., 70(2), 555569.
Štibal, M., Sabacká, M. and Kaštovská, K.. 2006. Microbial communities on glacier surfaces in Svalbard: impact of physical and chemical properties on abundance and structure of cyanobacteria and algae. Microbial Ecol., 52(4), 644654.
Štibal, M., Tranter, M., Benning, L.G. and Rehák, J.. 2008. Microbial primary production on an Arctic glacier is insignificant in comparison with allochthonous organic carbon input. Environ. Microbiol., 10(8), 21722178.
Takeuchi, N., Kohshima, S., Yoshimura, Y., Seko, K. and Fujita, K.. 2000. Characteristics of cryoconite holes on a Himalayan glacier, Yala Glacier central Nepal. Bull. Glaciol. Res., 17, 5159.
Takeuchi, N., Kohshima, S., Goto-Azuma, K. and Koerner, R.M.. 2001a. Biological characteristics of dark colored material (cryoconite) on Canadian Arctic glaciers (Devon and Penny ice caps). Mem. Natl Inst. Polar Res., Special Issue 54, 495505.
Takeuchi, N., Kohshima, S. and Seko, K.. 2001b. Structure, formation, and darkening process of albedo-reducing material (cryoconite) on a Himalayan glacier: a granular algal mat growing on the glacier. Arct. Antarct. Alp. Res., 33(2), 115122.
Tsuneda, S., Jung, J., Hayashi, H., Aikawa, H. and Sasaki, H.. 2003. Influence of extracellular polymers on electrokinetic properties of heterotrophic bacterial cells examined by soft particle electrophoresis theory. Colloids Surf. B, 29(2–3), 181188.
Von Drygalski, E. 1897. Die Kryoconitlöcher. In Von Drygalski, E., ed. Grønland-Expedition der Gesellschaft für Erdkunde zu Berlin 1891–1893, Vol. 1. Berlin, W.H. Kühl, 93103.
Wharton, R.A. Jr, McKay, C.P., Simmons, G.M. Jr and Parker, B.C.. 1985. Cryoconite holes on glaciers. BioScience, 35(8), 499503.
Yee, N., Benning, L.G., Phoenix, V.R. and Ferris, F.G.. 2004. Characterization of metal–cyanobacteria sorption reactions: a combined macroscopic and infrared spectroscopic investigation. Environ. Sci. Technol., 38(3), 775782.
Yoshimura, Y., Kohshima, S. and Ohtani, S.. 1997. A community of snow algae on a Himalayan glacier: change of algal biomass and community structure with altitude. Arct. Alp. Res., 29(1), 126137.
Zavarzin, G.A. and Alekseeva, T.V.. 2009. A puddle: an ombrophilic cyano-bacterial community. Microbiology, 78(4), 468473.
Zulpa de Caire, G., Storni de Cano, M., Zaccaro de Mulé, M.C., Palma, R.M. and Colombo, K.. 1997. Exopolysaccharide of Nostoc muscorum (Cyanobacteria) in the aggregation of soil particles. J. Appl. Phycol., 9(3), 249253.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Annals of Glaciology
  • ISSN: 0260-3055
  • EISSN: 1727-5644
  • URL: /core/journals/annals-of-glaciology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Full text views

Total number of HTML views: 1
Total number of PDF views: 45 *
Loading metrics...

Abstract views

Total abstract views: 65 *
Loading metrics...

* Views captured on Cambridge Core between 14th September 2017 - 22nd April 2018. This data will be updated every 24 hours.