Skip to main content
×
×
Home

Multi-satellite sensor analysis of fast-ice development in the Norske Øer Ice Barrier, northeast Greenland

  • Nicholas E. Hughes (a1), Jeremy P. Wilkinson (a2) and Peter Wadhams (a3)
Abstract

The Norske Øer Ice Barrier (NØIB) is a region of fast ice located off the northeast coast of Greenland. It is one of the most extensive areas of landfast ice on Earth. This paper looks at the NØIB formation during the freeze-up of late 2003 and the break-up in summer 2004. As the fast ice is immobile, it provides an ideal location for checking the consistency of classification schemes for satellite sensors. Active microwave (SAR) backscatter values from Envisat are compared with optical observations from the MODIS, multichannel passive microwave from the SSM/I and with ice-freeboard values from the Envisat RA-2. In August 2004 the underside of the NØIB was mapped by an upward-looking multibeam sonar mounted on the Autosub autonomous underwater vehicle. Statistics from sea-ice draft measurements by the multibeam are compared with near-coincident satellite observations. Evaluating the evolution of the fast ice through multiple satellite sensors with ground truth measurements may allow future development of improved automatic classification algorithms which will be better able to track fast-ice extent. Loss of the fast ice for periods of the year has implications for the coastal environment of Greenland and may contribute to the retreat of the Nioghalvfjerdsfjorden glacier and enhanced coastal erosion.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Multi-satellite sensor analysis of fast-ice development in the Norske Øer Ice Barrier, northeast Greenland
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Multi-satellite sensor analysis of fast-ice development in the Norske Øer Ice Barrier, northeast Greenland
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Multi-satellite sensor analysis of fast-ice development in the Norske Øer Ice Barrier, northeast Greenland
      Available formats
      ×
Copyright
References
Hide All
Arctic Marine Shipping Assessment (AMSA). 2009. Arctic Marine Shipping Assessment 2009 report. Trømso, Arctic Council.
Bjørgo, E., Johannessen, O.M. and Miles, M.W.. 1997. Analysis of merged SMMR–SSMI time series of Arctic and Antarctic sea ice parameters 1978–1995. Geophys. Res. Lett., 24(4), 413416.
Carstensen, L.S. and B.V. Jørgensen. 2009. Weather and climate data from Greenland 1958–2008. Copenhagen, Danish Meterological Institute. (DMI Tech. Rep. TR09-11.)
Colton, M.C. and Poe, G.A.. 1999. Intersensor calibration of DMSP SSM/I’s: F-8 to F-14, 1987–1997. IEEE Trans. Geosci. Remote Sens., 37(1), 418439.
Comiso, J.C. and Nishio, F.. 2008. Trends in the sea ice cover using enhanced and compatible AMSR-E, SSM/I, and SMMR data. J. Geophys. Res., 113(C2), C02S07. (10.1029/2007JC004257.)
Comiso, J.C., Wadhams, P., Krabill, W.B., Swift, R.N., Crawford, J.P. and Tucker, W.B., III. 1991. Top/bottom multisensor remote sensing of Arctic sea ice. J. Geophys. Res., 96(C2), 26932709.
Connor, L.N., Laxon, S.W., Ridout, A.L., Krabill, W.B. and McAdoo, D.C.. 2009. Comparison of Envisat radar and airborne laser altimeter measurements over Arctic sea ice. Remote Sens. Environ., 113(3), 563570
Gumley, L.E., Hubanks, P.A. and Masuoka, E.J.. 1994. MODIS airborne simulator level 1B data user’s guide. NASA Tech. Mem. 105594. (MODIS Technical Report Series, vol. 3.)
Higgins, A.K. 1989. North Greenland ice islands. Polar Rec., 25(154), 207212.
Higgins, A.K. 1991. North Greenland glacier velocities and calf ice production. Polarforschung, 60(1), 123.
Hughes, N.E. 2009. Sea ice channel classification from multichannel passive microwave datasets. IEEE Geosci. Remote Sens. Lett., 3(3), 125128.
Hughes, N.E. and Wadhams, P.. 2006. Measurement of Arctic sea-ice thickness by submarine 5 years after SCICEX. Ann. Glaciol., 44, 200204.
Key, J.R., Collins, J.B., Fowler, C. and Stone, R.S.. 1997. High-latitude surface temperature estimates from thermal satellite data. Remote Sens. Environ., 61(2), 302309.
Koch, L. 1945. The East Greenland ice. Medd. Grønl., 130(3).
Liu, Y., Key, J.R., Frey, R.A., Ackerman, S.A. and Menzel, W.P.. 2004. Nighttime polar cloud detection with MODIS. Remote Sens. Environ., 92(2), 181194.
Lubin, D., Garrity, C., Ramseier, R.O. and Whritner, R.H.. 1997. Total sea ice concentration retrieval from the SSM/I 85.5 GHz channels during the Arctic summer. Remote Sens. Environ., 62(1), 6376.
Mueller, D.R.,Vincent, W.F. and Jeffries, M.O.. 2003. Break-up of the largest Arctic ice shelf and associated loss of an epishelf lake. Geophys. Res. Lett., 30(20), 2031. (10.1029/2003GL017931.)
Onstott, R. 1992. SAR and scatterometer signatures of sea ice. In Carsey, F.D. and 7 others, eds. Microwave remote sensing of sea ice. Washington, DC, American Geophysical Union, 73104. (Geophysical Monograph Series 68.)
Parkinson, C.L., Comiso, J.C., Zwally, H.J., Cavalieri, D.J., Gloersen, P. and Campbell, W.J.. 1987. Arctic sea ice, 1973–1976: satellite passive-microwave observations. Washington, DC, National Aeronautics and Space Administration. (NASA SP-489.)
Peacock, N.R. and Laxon, S.W.. 2004. Sea surface height determination in the Arctic Ocean from ERS altimetry. J. Geophys. Res., 109(C7), C07001. (10.1029/2001JC001026.)
Pedersen, L.T. and Saldo, R.. 2005. Experience with near real time distribution of Envisat ASAR data to end-users. In Lacoste, H. and Ouwehand, L.. eds. Proceedings of the 2004 Envisat and ERS symposium, 6–10 September 2004, Salzburg, Austria. Noordwijk, European Space Agency. ESA Publications Division. (ESA SP-752.) CD-ROM.
Reeh, N., Thomsen, H.H., Higgins, A.K. and Weidick, A.. 2001. Sea ice and the stability of north and northeast Greenland floating glaciers. Ann. Glaciol., 33, 474480.
Riggs, G.A., Hall, D.K. and Ackerman, S.A.. 1999. Sea ice extent and classification mapping with the Moderate Resolution Imaging Spectrometer Airborne Simulator (MAS). Remote Sens. Environ., 68(2), 152163.
Schneider, W. and Budéus, G.. 1995. On the generation of the NortheastWater Polynya. J. Geophys. Res., 100(C3), 42694286.
Schneider, W. and Budéus, G.. 1997. A note on Norske Ø Ice Barrier (northeast Greenland), viewed by Landsat 5 TM. J. Mar. Syst., 10(1–4), 99106.
Vinje, T.E. 1982. A grounded iceberg in Fram Strait. Polar Rec., 21(131), 174175.
Wadhams, P., Wilkinson, J.P. and McPhail, S.D.. 2006. A new view of the underside of Arctic sea ice. Geophys. Res. Lett., 33(4), L04501. (10.1029/2005GL025131.)
Willatt, R.C., Giles, K.A., Laxon, S.W., L. Stone-Drake and Worby, A.P.. 2010. Field investigations of Ku-Band radar penetration into snow cover on Antarctic sea ice. IEEE Trans. Geosci. Remote Sens., 48(1), 365372.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Annals of Glaciology
  • ISSN: 0260-3055
  • EISSN: 1727-5644
  • URL: /core/journals/annals-of-glaciology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed